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Abstract We used two methods to address two aspects of

multi-finger synergies and their changes after fatigue of the

index finger. Analytical inverse optimization (ANIO) was

used to identify cost functions and corresponding spaces

of optimal solutions over a broad range of task parame-

ters. Analysis within the uncontrolled manifold (UCM)

hypothesis was used to quantify co-variation of finger

forces across repetitive trials that helped reduce variability

of (stabilized) performance variables produced by all the

fingers together. Subjects produced steady-state levels of

total force and moment of force simultaneously as accu-

rately as possible by pressing with the four fingers of the

right hand. Both before and during fatigue, the subjects

performed single trials for many force–moment combina-

tions covering a broad range; the data were used for the

ANIO analysis. Multiple trials were performed at two

force–moment combinations; these data were used for

analysis within the UCM hypothesis. Fatigue was induced

by 1-min maximal voluntary contraction exercise by the

index finger. Principal component (PC) analysis showed

that the first two PCs explained over 90% of the total

variance both before and during fatigue. Hence, experi-

mental observations formed a plane in the four-dimen-

sional finger force space both before and during fatigue

conditions. Based on this finding, quadratic cost functions

with linear terms were estimated from the experimental

data. The dihedral angle between the plane of optimal

solutions and the plane of experimental observations

(DANGLE) was very small (a few degrees); it increased

during fatigue. There was an increase in fatigue of the

coefficient at the quadratic term for the index finger force

balanced by a drop in the coefficients for the ring and

middle fingers. Within each finger pair (index–middle and

ring–little), the contribution of the ‘‘central’’ fingers to

moment production increased during fatigue. An index of

antagonist moment production dropped with fatigue. Fati-

gue led to higher co-variation indices during pronation

tasks (index finger is an agonist) but opposite effects during

supination tasks. The results suggest that adaptive changes

in co-variation indices that help stabilize performance may

depend on the role of the fatigued element, agonist or

antagonist.

Keywords Fatigue � Finger � Redundancy � Synergy �
Inverse optimization � Uncontrolled manifold hypothesis

Introduction

Muscle fatigue leads to changes at various levels of the

neuromotor system (reviewed in Enoka and Duchateau

2008; Enoka et al. 2011). Several recent studies have

documented fatigue-induced changes in coordination of

multi-element redundant systems that take part in virtually

all natural movements (Forestier and Nougier 1998; Côté

et al. 2002, 2008; Huffenus et al. 2006; Gates and Dingwell

2008; Fuller et al. 2009; Singh et al. 2010b; Singh and

Latash 2011). A few of those studies used the framework of

the uncontrolled manifold (UCM) hypothesis to quantify

changes in multi-finger (Singh et al. 2010a, b) and multi-

muscle synergies (Singh and Latash 2011) following fati-

gue of one of the elements (a finger or a muscle group)

participating in the tasks. The UCM hypothesis (Scholz and

Schöner 1999; Latash et al. 2002, 2007) assumes that the

neural control of a redundant system may be adequately
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described as associated with the formation of a sub-space

(UCM) within the space of elemental variables (for

example, individual digit forces) corresponding to a desired

magnitude of an important performance variable (for

example, resultant force and/or moment of force produced

by all the digits together). Further, variance across repeti-

tive attempts may be represented as the sum of two com-

ponents, within the UCM (‘‘good’’ variance or VUCM) and

orthogonal to the UCM (‘‘bad’’ variance or VORT). If most

of the variance is ‘‘good’’ (statistically, VUCM [ VORT), a

conclusion can be drawn that the performance variable is

stabilized (in a sense of decreased variability) by co-varied

adjustments of elemental variables.

The mentioned studies by Singh and colleagues of the

effects of fatigue documented an increase in the variance of

all elements, fatigued and non-fatigued, with most of the

increase channeled into VUCM. In other words, synergy

indices related to stabilization of such performance vari-

ables as total force (in finger studies) and coordinate of the

center of pressure of a standing person (in multi-muscle

tasks) increased during fatigue, thus mitigating effects of

fatigue on accuracy of performance.

Recently, a new method has been introduced to address

another aspect of performance of a redundant system. The

method, analytical inverse optimization (ANIO), assumes

that patterns of involvement of individual elements into

multi-element tasks are defined by an optimization prin-

ciple. ANIO allows computing a cost function that is

minimized by the system over a broad range of task

parameters, under certain conditions and assumptions

(Terekhov et al. 2010; Terekhov and Zatsiorsky 2011).

Within the general framework of the idea of synergies

(Latash 2010), ANIO addresses the problem of sharing

performance variables among elements, while the UCM

hypothesis addresses variable solutions during repetitive

attempts at the same task.

The two approaches to analysis of synergies, UCM-

based and ANIO-based, have been used together to analyze

finger coordination in pressing tasks in young and older

persons (Park et al. 2010, 2011a). Those studies have

shown, in particular, that older persons demonstrate larger

discrepancies between the observed finger force combina-

tions and those computed from the reconstructed cost

functions (quantified with the dihedral angle between the

two planes corresponding to the actual and predicted from

optimization finger force values, respectively). In addition,

multi-finger synergies stabilizing total force and total

moment were weaker in the older group. These results have

suggested that there may be a link between changes in the

two characteristics of synergies with age.

The main goal of the current study was to explore

effects of fatigue on patterns of sharing of the total force

(FTOT) and moment (MTOT) across a redundant set of

fingers in pressing tasks. To perform the ANIO analysis,

we used a set of single trials performed over a broad range

of {FTOT; MTOT} values. We introduced a few changes into

the ANIO methodology. Unlike earlier studies, the range of

MTOT was scaled to FTOT to avoid combinations of large

MTOT and small FTOT that proved to be hard to perform.

We also changed the method of normalization of the

coefficients reconstructed with ANIO (see Methods for

details). Two {FTOT; MTOT} combinations were selected to

perform analysis of synergies across repetitive trials using

the UCM-based analysis.

Based on the earlier studies (Singh et al. 2010a, b), we

hypothesized that fatigue would lead to stronger synergies

reflected in larger co-variation among elemental variables

across repetitive attempts at the same task. On the other

hand, we expected performance across different tasks to be

less consistent in following a single optimization principle

(cf. Enoka and Duchateau 2008), resulting in larger values

of the dihedral angle between the planes of optimal solu-

tions and experimental observations (DANGLE). Potentially,

these two hypotheses can compete with each other, given

the reported link between the synergy indices and the

dihedral angle (Park et al. 2010, 2011a).

Methods

Subjects

Eight young male subjects were recruited in the study.

Their average age, height and weight were 28.38 ± 5.73

years (mean ± standard deviation), 175 ± 4.66 cm and

70.89 ± 6.90 kg. All subjects were right-handed with no

known previous history of neuropathies or traumas to their

upper extremities. Also, none of the subjects had a history

of excessive use of hands and fingers such as typing as a

job and playing musical instruments. Before testing, the

experimental procedures of the study were explained,

and the subjects signed a consent form approved by the

Office for Research Protection in the Pennsylvania State

University.

Apparatus

Four force sensors (Nano-17, ATI Industrial Automation,

Garner, NC) were used to measure vertical forces (i.e.,

normal forces) by individual fingers. The sensors were

attached to a customized flat panel (140 9 90 9 5 mm)

(Fig. 1c). The sensors were covered with sandpaper in

order to increase the friction between subject’s fingertips

and the surfaces of sensors. The position of each sensor in

the sagittal plane (i.e., Y-axis) was adjusted according to

the hand anatomy of individual subject, and then the
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sensors were mounted on the adjusted position throughout

the whole experiments. The distance between adjacent

sensors was 3.0 cm in mediolateral direction within the

panel. The panel was mechanically fixed to a stationary

table. The four normal force signals were digitized at

200 Hz with a 16-bit resolution (PCI-6225, National

Instrument, Austin, TX) with a customized LabVIEW

program (LabVIEW 8.5, National Instrument, Austin, TX).

Procedures

Subjects had a 20-min orientation session to be instructed

in the experimental procedure and to become familiar with

the experimental setup. The subjects had multiple practice

trials to ensure that they were able to perform the tasks

prior to the main experiments. The subjects sat in a chair

facing the 19-inch computer screen, which was positioned

0.5 m in front of the subject, and positioned their right

upper arm on a wrist-forearm brace that was fixed to the

table. The forearm was held stationary with Velcro straps.

The subjects placed the fingertips on the centers of sensors

and kept the fingertips on the sensors during finger force

measurement (Fig. 1b). A wooden piece was placed

underneath the subject’s right palm (Fig. 1b) in order to

avoid changes in the configuration of the hand and fingers

(Li et al. 1998; Kang et al. 2004; Olafsdottir et al. 2007).

The experiment consisted of two main conditions including

before-fatigue and during-fatigue conditions. Within each

condition, there were two main tasks: (1) maximal volun-

tary contraction (MVC) tasks and (2) accurate total force–

moment {FTOT; MTOT} production tasks.

Before-fatigue condition

First, the four-finger maximal voluntary contraction force

(MVCIMRL) and index finger MVC force (MVCI) were

measured in order to scale the task space in the {FTOT;

MTOT} production tasks. During the MVC tests, the sub-

jects were instructed to reach maximal pressing force

within 3 s by the index finger alone (MVCI) and by all four

fingers (MVCIMRL), and the maximal force was measured.

During the MVCI task, the subjects were asked to keep all

the fingers on the sensors and ignore possible force pro-

duction by other fingers. During the accurate force–

moment production tasks, the subjects were required to

produce various {FTOT; MTOT} combinations as accurately

as possible. MTOT was computed with respect to the mid-

point between the middle (M) and ring (R) fingers

assuming lever arms dI = -4.5 cm, dM = -1.5 cm,

dR = 1.5 cm, dL = 4.5 cm (I—index, M—middle, R—

ring, L—little). The subjects were explicitly told how

MTOT was computed and had sufficient practice trials

during the orientation session.

In each trial, the subjects were required to reach the

{FTOT; MTOT} target values in a moderate speed and

maintain these values at least for 1.5 s as accurately as

possible within 6 s. The subjects relaxed and waited for the

next target as soon as a given trial was done successfully.

The computer screen showed the task and the cursor cor-

responding to the current FTOT along the vertical axis and

MTOT along the horizontal axis (see Fig. 1a).

There were nine levels of FTOT, from 5 to 45% of

MVCIMRL at 5% intervals, and 16 levels of MTOT,

from 4.0SU to 4.0PR at 0.5PR intervals; PR—pronation,

SU—supination. As in earlier studies (Park et al. 2010,

2011a, b), 1PR was defined as the product of 7% of MVCI

by the lever arm of the index finger (dI = -4.5 cm). The

number of MTOT levels was different for each level of

FTOT as shown in Table 1. As a result, the {FTOT; MTOT}

task space formed a triangle, which differed from the

rectangular task spaces employed in previous studies

(Park et al. 2010, 2011a, b). This was done to avoid

relatively large performance errors in tasks involving low

FTOT and high MTOT.

Fig. 1 a The feedback screens during the MVC task and accurate

force–moment production tasks. During each trial, the produced FTOT

and MTOT values were displayed on the computer screen, which

showed the task and the cursor corresponding to the current FTOT

along the vertical axis and MTOT along the horizontal axis. b The

experimental setup. A wooden piece was placed underneath the

subject’s right palm in order to avoid changes in the configuration of

the hand and fingers. c The finger pressing setup. The sensors, shown

as white cylinders, were attached to a wooden frame. The frame was

fixed to the immovable table
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The subjects performed one trial for each {FTOT; MTOT}

combination in a random order for a total of 81 trials.

Finger forces from these 81 trials were used to compute a

cost function with the ANIO approach. Two sets of {FTOT;

MTOT} combinations, {30% of MVCIMRL, 2PR} and {30%

of MVCIMRL, 2SU}, were performed 20 times each by each

subject. These sets of trials were used to perform analysis

of synergies within the UCM hypothesis framework. After

each block of 5 trials, a 20-s break was given. When the

subjects requested, additional rest was provided, and no

subjects reported fatigue in the before-fatigue condition.

During-fatigue condition

The subjects had a 5-min break upon the completion of the

before-fatigue condition. As in earlier studies (Danion et al.

2000, 2001; Singh et al. 2010a, b), we used 1-min MVC

force production by the index finger to induce initial fati-

gue. After the initial fatiguing exercise, MVCIMRL and

MVCI were measured to re-scale the task space. Within the

newly scaled task space, the subjects performed the same

numbers of trials for force–moment production tasks, 81

trials at different {FTOT, MTOT} combinations for the

ANIO analysis and 20 trials at each of the two {FTOT,

MTOT} combinations for the UCM analysis. To avoid index

finger force recovery, after every five trials of {FTOT;

MTOT} production tasks, the subjects were asked to per-

form MVCI for 20 s as an additional exercise. This was

done to keep the fatigue-induced drop in MVCI at about

30% (as in Singh et al. 2010a, b). Thus, each subject per-

formed 24 of 20-s subsequent fatigue exercises. It should

be noted that only the index finger was actively involved in

the fatigue exercise, and the subjects were instructed to

avoid the force production by other fingers. The entire

experiment including both before- and during-fatigue

conditions, which lasted for approximately 1.5 h.

Data analysis

Initial data processing

Matlab (Matlab 7.4.0, Mathworks, Inc) programs were written

for data processing and analysis. The 4th-order, 5-Hz Butter-

worth low-pass digital filter was applied to the original force

data. The filtered finger force data from each trial were averaged

over 1.5 s in the middle of the time period where steady-state

values of individual finger forces were observed. The steady-

state time period was identified by visual data inspection.

Task constraints

There were two constraints for each trial:

FTOT ¼ FI þ FM þ FR þ FL ¼ a �MVCIMRL; ð1Þ

where a indicates a given percentage of MVC (a = 5 to

45% at 5% interval).

MTOT ¼ dI � FI þ dM � FM þ dR � FR þ dL � FL

¼ b � 0:07 � dI �MVCI ¼ b � 1PR ð2Þ

where d stands for the lever arm; b = -4 to 4 at 0.5

intervals.

The ANIO approach (for details see Appendix 1)

First, principal component analysis (PCA) was performed

on the 81-trial sets of the finger force data for each subject

collected in the before- and during-fatigue conditions

separately. The significant PCs were extracted with the

Kaiser criterion (Kaiser 1960; PCs with eigenvalues above

1.0). The percent of the total variance explained by the first

two PCs was computed to examine whether the experi-

mental data were confined to a two-dimensional space in

the four-dimensional force space. Assuming planar data

Table 1 Combinations of target total force (FTOT) and moment of force (MTOT)

FTOT (%MVC) MTOT (PR)

45 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

40 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

35 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

30 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

25 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

20 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

15 -0.5 -1.0 0.0 0.5 1.0

10 -0.5 0.0 0.5

5 0.0

The levels of target FTOT and MTOT are given in percent of four-finger MVC (maximal voluntary contraction) and multiples of 1PR, respectively.

1PR was defined as the product of 7% index finger MVC by the lever arm of the index finger (-4.5 cm). PR stands for pronation

The conditions in bold were used to perform finger force co-variation analyses
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distributions (as in earlier studies, Park et al. 2010, 2011a,

b), the objective function was expected to be

J ¼ 1

2

X

i

ki � F2
i þ

X

i

wi � Fi ð3Þ

where i = {index (I), middle (M), ring (R), and little (L)},

and k and w are coefficients. All the coefficients were

normalized by the square root of the sum of the second-

order coefficient squared (i.e., by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

I þ k2
M þ k2

R þ k2
Lð Þ

p
)

for across-subjects comparisons. We expected all ki [ 0 to

comply with the basic assumptions of the objective func-

tion minimization (Terekhov et al. 2010). The angle

between the plane of optimal solutions computed for

the same set of {FTOT, MTOT} combinations based on the

computed cost function and the plane determined by the

experimental observations (the dihedral angle, DANGLE)

was computed for each condition.

Co-contraction index

The IM and RL finger pairs produced moments of force in

opposite directions, PR or SU, respectively. Agonist

moment (MAGO) and antagonist moment (MANT) were

defined as the moment produced by the finger pair acting in

the direction of task MTOT and opposite to the required

direction, respectively. I and M fingers produced MAGO

during PR and MANT during SU. R and L fingers produced

MANT during PR and MAGO during SU. A co-contraction

index (CCI) was computed using absolute magnitudes of

MAGO and MANT:

CCI ¼ 1� MAGOj j � MANTj j
MAGOj j þ MANTj j ¼ 2

MANTj j
MAGOj j þ MANTj j ð4Þ

Theoretically, CCI could range from 0 (MANT = 0) to 1

(MAGO = -MANT).

The task space was divided into six areas, and average

CCI was computed within each area. The six areas corre-

sponded to three levels of FTOT (low—10–20%, mid—25–

35% and high—40–45%) and two levels of MTOT (PR and

SU).

Moment of force sharing analysis

Given that the nominal pivot was in between the M and R

fingers, the lateral fingers (I and L) had larger moment

arms as compared to the central fingers. The percent of

MAGO and MANT produced by the lateral fingers,

%MAGO_Lateral and %MANT_Lateral, was quantified:

%MAGO Lateral ¼
MAGO Lateral

MAGO

� 100 ð5Þ

%MANT Lateral ¼
MANT Lateral

MANT

� 100 ð6Þ

Total performance error

Over the two sets of 20 trials for the two {FTOT; MTOT}

combinations, the total performance error (TPE) was

quantified as the average absolute magnitude of the dif-

ference between the produced and task variables. It was

quantified in percent to the task variables:

TPEF ¼
X20

i¼1

Fi
TOT � FTarget

�� ��
FTarget

� 100

 !,
20 ð7Þ

TPEM ¼
X20

i¼1

Mi
TOT �MTarget

�� ��

MTarget

�� �� � 100

 !,
20 ð8Þ

where Fi
TOT and Mi

TOT represent the produced total force

and moment of force at i-th trial, respectively. FTarget and

MTarget indicate the prescribed total force and moment of

force, respectively.

Synergy analysis (for details see Appendix 2)

The finger force data were analyzed within the framework

of the UCM hypothesis (Scholz and Schöner 1999) using

the sets of 20 trials at the same {FTOT; MTOT} combina-

tions. Briefly, two variance components were computed

across the 20 trials. One of the components (VUCM) did not

change the averaged across trials magnitude of the selected

performance variable, while the other component (VORT)

reflected force variance that did. VUCM and VORT were

computed with respect to FTOT, MTOT and {FTOT, MTOT}

simultaneously as the performance variables. Further, an

index reflecting the relative amounts of VUCM and VORT

was computed as follows:

DV ¼ VUCM � VORT

VTOT

; ð9Þ

where VTOT stands for the total finger force variance, and

each variance index is computed per degree of freedom in

the corresponding spaces. The index was computed with

respect to FTOT (DVF), MTOT (DVM) and {FTOT, MTOT}

(DVFM). Prior to statistical analysis (see later), this index

was transformed using a Fisher’s z-transformation (DVz)

adapted to the boundaries of DV.

Statistics

The data are presented as means and standard errors. For

the sets of 81 combinations of {FTOT; MTOT}, we explored

effects of fatigue on the coefficients (ki and wi) in the J

function, the co-contraction index (CCI) and the torque

shares by the lateral moment agonist (%MAGO_Lateral) and

antagonist (%MANT_Lateral). Repeated-measures ANOVAs

were used with factors Fatigue (two levels: before and
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during fatigue), Force (three levels: low, mid and high) and

Moment (two levels: PR and SU). The assumptions of

sphericity were checked using Mauchly’s sphericity test,

and the Greenhouse–Geisser correction was used if the

assumption of sphericity was violated. For the coefficients

in the J cost function and DANGLE, Wilcoxon’s signed-

ranks test was used for comparisons between before- and

during-fatigue conditions.

For the sets of 20 repetitive trials for two {FTOT; MTOT}

combinations, ANOVAs with repeated measures were used

with the following factors: Fatigue, Moment, Analysis (two

levels: FTOT, MTOT or three levels: FTOT, MTOT, {FTOT;

MTOT}) and Finger (four levels: I, M, R and L). The factors

were chosen based on particular comparisons. For com-

parison of force sharing patterns between the before- and

after-fatigue conditions, MANOVA was used, and Rao’s R

was computed. Since the sum of force shares of individual

fingers is always 100%, only three shares, those by the M,

R, and L fingers, were used for comparison. Tukey’s

honestly significant difference tests and pairwise contrasts

were used to explore significant effects.

UANGLE, the dihedral angle between the UCM and the

plane of optimal solutions, was compared between the

before-fatigue (Ubefore
ANGLE) and during-fatigue (Uduring

ANGLE) con-

ditions and also to 90� (t tests).

Prior to ANOVAs, variables with computational bound-

aries were transformed using Fisher’s z-transformation

according to the boundaries of each variable. The statistical

power for all comparisons was computed, and for all planned

comparisons, the power was over 0.7 for the pool of 8 sub-

jects. The level of significance was set at P \ 0.05.

Results

Effect of fatigue on maximal force production

The average MVC of the index finger (MVCI) and all four

fingers (MVCIMRL) across subjects was 34.63 N (±7.91 N)

and 70.13 N (±5.87 N), respectively. After the 1-min

MVC exercise by the index finger (the initial fatigue

exercise), MVC forces dropped significantly for both the

index finger (to 20.88 ± 4.76 N, P \ 0.001) and four fin-

gers (to 55.13 ± 7.00 N, P \ 0.01). On average, the peak

force dropped by 36.2% [range 21.95–47.2%] and 17.6%

[range 7.8–30.0%] for the I-finger and four-finger tasks,

respectively.

Principal component analysis

The PCA was performed on the sets of 81 finger force

combinations performed both before- and during-fatigue

conditions. The 81 observations covered a broad range of

{FTOT; MTOT} combinations (see Methods for details).

Overall, the first two PCs accounted for more than 90% of

the total variance in the finger force space for both before-

and during-fatigue conditions (Table 2). The average

across-subjects amount of variance explained by the first

two PCs (94.96% vs. 94.45%) was similar for the two

conditions. The ranges were also similar. The PCA results

show that the experimental observations were mainly

confined to a two-dimensional hyperplane in the four-

dimensional force space, and the planarity was not affected

by fatigue.

The ANIO approach

Based on the PCA results, we concluded that the cost

function was quadratic with linear terms: J ¼
1
2

P
i ki � F2

i þ
P

i wi � Fi (see ‘Method’ and Terekhov et al.

2010). The coefficients at the quadratic (ki) and the linear

terms (wi) were defined to provide the best fit for the data.

These coefficients for individual subjects in the two con-

ditions (before and during fatigue) are presented in

Table 3. It should be noted that all the k coefficients are

positive, which confirms the applicability of the ANIO

method (see Terekhov et al. 2010; Terekhov and Zatsiorsky

2011).

After the fatiguing exercise, the second-order coeffi-

cients (kI) at the I finger force increased for all subjects,

while k for the M and R finger forces decreased for most

subjects (kM: for 5 out of 8 subjects, kR: for 6 out of 8

subjects) (Fig. 2a). There was no consistency in the chan-

ges in kL for the L finger force. Wilcoxon’s signed-ranks

test confirmed significant differences in kI and kR

(P \ 0.05). The coefficients at the linear terms (w) for the

lateral (I and L) finger forces were negative, while those for

the central (M and R) finger forces were positive both

before and during fatigue (Fig. 2b). There were no signif-

icant changes in the magnitude of w after the fatiguing

exercise.

The average DANGLE (the angle between the plane of

optimal solution and the plane of experimental observa-

tions) across subjects increased with the fatiguing exercise,

on average, from 2.37 ± 1.91� to 3.72 ± 1.46� (P \ 0.05,

t test).

Co-contraction index

In all tasks that required non-zero MTOT production, fingers

that acted in the MTOT direction (agonists, MAGO) and those

that acted in the opposite direction (antagonists, MANT)

produced force. The co-contraction index (CCI) quantified

the relative magnitude of MANT with respect to MAGO.
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Because the task space was scaled with MVCIMRL (along

the FTOT axis) and MVCI (along the MTOT axis), the

fatiguing exercise led to a reduction in the task space along

both axes. The CCI comparison between the two conditions

was performed using the data before fatigue for task sub-

spaces that overlapped with the task space during fatigue

(in absolute units, N and Nm). For each subject, this task

space was divided into six areas corresponding to three

levels of force (low, mid and high) and two levels of

moment (PR and SU)—see Methods for more details.

Figure 3 illustrates the CCI indices averaged across

subjects. CCI increased with FTOT (low, mid \ high), and it

was higher for PR tasks as compared to SU tasks. Fatigue led

to a significant drop in CCI; these effects were stronger for PR

tasks. A three-way repeated-measures ANOVA on z-trans-

formed CCI Fatigue 9 Force 9 Moment confirmed signifi-

cant effects of all three factors [Fatigue: F[1,7] = 67.67,

P \ 0.001; Force: F[2,14] = 57.50, P \ 0.001; Moment:

F[1,7] = 91.00, P \ 0.001] with significant Fatigue 9 Force

[F[2,14] = 16.99, P \ 0.01] and Fatigue 9 Moment

[F[1,7] = 25.50, P \ 0.01] interactions. The Fatigue 9 Force

interaction reflected the fact that CCI before fatigue was larger

than CCI during fatigue at low and mid force conditions

(P \ 0.05).

Moment of force sharing

Further, we analyzed the relative contributions of the

lateral (I and L) fingers to both MAGO and MANT

(%MAGO_LATERAL and %MANT_LATERAL). As shown in

Fig. 4, both indices were significantly larger before fatigue

than during fatigue. In addition, %MAGO_LATERAL decreased

with the magnitude of prescribed force (low [ mid [ high),

particularly for PR tasks; %MAGO_LATERAL in PR was larger

than that in SU when the prescribed force was low (Fig. 4a).

No such differences were observed for %MANT_LATERAL.

These results were confirmed by ANOVAs on z-transformed

%MAGO_LATERAL and %MANT_LATERAL that showed

main effect of Fatigue on both indices [F[1,7] = 6.56,

P \ 0.05 for %MAGO_LATERAL; F[1,7] = 10.15, P \ 0.05 for

Table 2 Variance explained by PCs

PC1 PC2 PC1 ? PC2

Mean Range [min, max] Mean Range [min, max] Mean Range [min, max]

Before fatigue 66.16 [59.60, 71.37] 28.80 [25.45, 31.75] 94.96 [91.36, 96.82]

During fatigue 69.68 [61.93, 79.10] 24.76 [17.65, 29.03] 94.45 [90.96, 96.75]

The average and minimal–maximal percent variances (in parentheses) explained by PC1, PC2 and PC1 ? PC2 across subjects are shown

Table 3 The parameters ki and wi estimated from the ANIO approach

Subject kI kM kR kL wI wM wR wL DANGLE

(8)

1 Before fatigue 0.43 0.36 0.41 0.72 -0.60 0.51 0.77 -0.69 1.06

During fatigue 0.51 0.43 0.41 0.62 -0.11 0.00 0.32 -0.22 3.55

2 Before fatigue 0.50 0.40 0.57 0.52 -0.10 0.20 -0.08 -0.01 1.49

During fatigue 0.56 0.40 0.51 0.51 -0.09 0.15 0.04 -0.07 1.51

3 Before fatigue 0.29 0.35 0.47 0.76 -0.10 0.00 0.03 -0.21 1.38

During fatigue 0.41 0.29 0.38 0.78 -0.10 0.05 0.03 -0.07 2.66

4 Before fatigue 0.55 0.52 0.52 0.40 -0.11 0.15 0.04 -0.07 1.88

During fatigue 0.58 0.49 0.50 0.47 -0.06 0.08 0.03 -0.05 3.15

5 Before fatigue 0.60 0.44 0.48 0.47 -0.39 0.48 0.22 -0.31 6.70

During fatigue 0.79 0.33 0.32 0.39 -0.38 0.46 0.21 -0.29 6.00

6 Before fatigue 0.64 0.43 0.40 0.50 -0.13 0.28 -0.16 0.01 3.08

During fatigue 0.74 0.37 0.34 0.45 -0.06 0.16 -0.13 0.03 3.80

7 Before fatigue 0.17 0.16 0.31 0.92 -0.11 0.12 0.07 -0.09 2.04

During fatigue 0.27 0.19 0.33 0.88 -0.11 0.13 0.06 -0.08 2.17

8 Before fatigue 0.56 0.31 0.39 0.66 -0.02 0.09 0.11 -0.05 0.58

During fatigue 0.63 0.08 0.12 0.76 -0.32 0.32 0.34 -0.33 4.87

ki and wi are the second- and first-order coefficients, respectively. I, M, R and L stand for the index, middle, ring and little finger, respectively.

DANGLE is the dihedral angle between the plane of computed optimal solutions and the plane of experimental observations

Exp Brain Res (2012) 216:591–607 597

123



%MANT_LATERAL] and significant interactions Force 9

Fatigue [F[2,14] = 4.15, P \ 0.05] and Force 9 Moment

[F[2,14] = 8.97, P \ 0.01] for %MAGO_LATERAL. The sig-

nificant Force 9 Fatigue interaction reflected a significant

drop in %MAGO_LATERAL with fatigue only at the high forces

(P \ 0.05). The significant Force 9 Moment interaction for

%MAGO_LATERAL reflected larger %MAGO_LATERAL in PR

than in SU only at low forces (P \ 0.05).

Effect of fatigue on total performance errors

The total performance errors (TPE) with respect to task

FTOT and MTOT measured in individual trials were aver-

aged across trials (20 trials) for each subject and condition

and then averaged across subjects. Overall, TPE of MTOT

(TPEM) was significantly larger than TPE of FTOT (TPEF).

Fatigue led to increase in both TPEF and TPEM, particularly

for the PR task (Fig. 5). These results were confirmed by

ANOVAs on z-transformed TPE that showed main effects of

Analysis (two levels: FTOT and MTOT) [F[1,7] = 11.18,

P \ 0.05] and Fatigue [F[1,7] = 18.67, P \ 0.01] with a

significant Fatigue 9 Moment interaction [F[1,7] = 5.17,

P \ 0.05]. The interaction reflected a significant increase in

TPE with fatigue only for the PR task (P \ 0.05).

Effect of fatigue on the sharing patterns and coefficient

of variation

The average shares of FTOT by individual fingers across 20

repetitive trials for two {FTOT; MTOT} combinations were

computed. The shares of the lateral finger (I and L) forces

decreased during fatigue, while the central finger (M and

R) shares increased with fatigue for both PR and SU tasks

(Fig. 6a). MANOVA with factors Fatigue (two levels) and

Moment (two levels) showed significant main effects of

Fatigue [R[3,5] = 6.65, P \ 0.05 and of Moment [R[3,5] =

99.91, P \ 0.0001] with a significant interaction

Moment 9 Fatigue [R[3,5] = 11.50, P \ 0.05]. Further,

univariate analysis of individual finger force shares showed

an effect of Fatigue for the I finger [F[1,7] = 24.56,

P \ 0.01, before fatigue [ during fatigue], M finger

[F[1,7] = 11.47, P \ 0.05, before fatigue \ during fatigue]

and L finger [F[1,7] = 15.29, P \ 0.01, before fatigue [
during fatigue]. The main effect of Moment was significant

for all three fingers (P \ 0.001). A significant Fati-

gue 9 Moment interaction for the force share of L finger

[F[1,7] = 10.18, P \ 0.05] reflected the fact that this share

before fatigue was larger than that during fatigue, partic-

ularly for SU tasks (P \ 0.05).

Fig. 2 The differences between the coefficients in the cost functions

computed based on the before-fatigue and during-fatigue conditions

for a the second-order (wi) and b the first-order terms (ki) for

individual subjects. The positive values mean that coefficients

increased during fatigue, while negative values mean that coefficients

decreased during fatigue. i = {I—index, M—middle, R—ring, L—

little}

Fig. 3 Co-contraction index (CCI) for different {FTOT; MTOT}

combinations before fatigue (black bars) and during fatigue (white
bars). The average values across subjects are presented. The error
bars represent the lower and upper quartiles of the data distribution

(25–75%). Low, mid and high forces correspond to the ranges of

10–20%, 25–35% and 40–45% of MVCIMRL, respectively. PR and SU

stand for pronation and supination, respectively
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Coefficient of variation (CV) was computed for each

individual finger force over the 20 repetitive trials. Overall,

CV during SU was significantly larger than during PR

(except for L finger). Fatigue led to higher CV during the

PR tasks but lower CV during the SU tasks (Fig. 6b). A

three-way ANOVA on CV, Fatigue 9 Finger 9 Moment,

showed main effects of Moment [F[1,7] = 15.77, P \ 0.01]

and Finger [F[3,21] = 3.11, P \ 0.05] with significant

interactions Fatigue 9 Moment [F[1,7] = 4.83, P \ 0.05]

and Moment 9 Finger [F[3,21] = 12.43, P \ 0.001]. The

Fatigue 9 Moment interaction reflected opposite changes

in CV for the PR and SU tasks with fatigue (P \ 0.05). The

Moment 9 Finger interaction reflected significant CV

differences between the PR and SU tasks for the I and M

finger forces (P \ 0.05), but not for the R and L finger

forces.

Analysis of multi-finger synergies

Two components of finger force variances, VUCM and

VORT, were quantified per degree of freedom with respect

to FTOT, MTOT and their combination, {FTOT, MTOT}.

Variances in the individual finger forces were normalized

by MVCIMRL squared of corresponding subject and fatigue

conditions.

Generally, VUCM was always greater than VORT, mean-

ing that finger force variability across trials was mostly

Fig. 4 a The percent torque produced by lateral agonist

(%MAGO_Lateral) to total agonist moment (MAGO) and b: the percent

torque produced by lateral antagonist (%MANT_Lateral) to the total

antagonist moment (MANT) before fatigue (black bars) and during

fatigue (white bars). The average values across subjects are presented.

The error bars represent the lower and upper quartiles of the data

distribution (25–75%). Low, mid and high forces correspond to the

ranges of 10–20%, 25–35% and 40–45% of MVCIMRL, respectively.

PR and SU stand for pronation and supination, respectively

Fig. 5 The total performance error (TPE) computed for total force

(TPEF) and total moment of force (TPEM) before fatigue (black bars)

and during fatigue (white bars). The average values across subjects

are presented with standard error bars

Fig. 6 a Force shares of the index (I), middle (M), ring (R) and little

(L) fingers before fatigue (black bars) and during fatigue (white bars)

averaged across subjects. b coefficient of variation (CV) before

fatigue (black bars) and during fatigue (white bars). Values are

means ± standard errors
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confined to a sub-space where the selected performance

variables remained unchanged. Both VUCM and VORT

increased with fatigue during the PR task, while VUCM

decreased with fatigue during the SU task. VUCM for

{FTOT; MTOT} stabilization was larger than VUCM for FTOT

and MTOT stabilizations, particularly during the SU task

(FTOT, MTOT \ FMTOT) (Fig. 7a). VORT for MTOT stabil-

ization was smaller than for the other two analyses

(MTOT \ FTOT \ FMTOT) (Fig. 7b). These findings were

supported by ANOVAs performed separately on VUCM and

VORT with factors Fatigue, Moment and Analysis (three

levels: FTOT-related, MTOT-related and FMTOT-related).

Main effect of Analysis on both indices was significant

[F[1.08,7.58] = 47.35, P \ 0.001 for VUCM; F[1,7] = 7.70,

P \ 0.01 for VORT]. There were significant interactions

Fatigue 9 Moment [F[2,14] = 5.80, P \ 0.05], Analysis 9

Moment [F[1.38,9.67] = 17.03, P \ 0.001] and Fatigue 9

Analysis 9 Moment [F[1.04,7.31] = 6.01, P \ 0.05] for

VUCM. The Analysis 9 Moment interaction reflected the

fact that the effect of Analysis on VUCM (FTOT,

MTOT \ FMTOT) was stronger during SU task than during

PR task (P \ 0.05), and this two-way interaction was

observed only before fatigue (confirmed by the three-way

interaction Fatigue 9 Analysis 9 Moment). The other

significant two-way interaction Fatigue 9 Moment reflec-

ted the fact that VUCM for the PR task was larger than that

for the SU task before fatigue, while VUCM (PR) \ VUCM

(SU) during fatigue (P \ 0.05). The difference in VORT for

the PR task between the two fatigue conditions (before

fatigue \ during fatigue) was just under the significance

level (P = 0.09).

The DV indices for FTOT (DVF), MTOT (DVM) and

{FTOT, MTOT} (DVFM) were computed as the normalized

difference between VUCM and VORT (see Methods). Across

the conditions, DVM [ DVF [ DVFM. Fatigue resulted in

higher DVF and DVFM during PR task, while DVF, DVM and

DVFM during SU task became smaller (Fig. 7c). A three-

way repeated-measures ANOVA with the factors Fatigue,

Moment and Analysis was performed on z-transformed DV

values. The main effects of Analysis was significant

[F[1.02,7.16] = 112.33, P \ 0.001), and the pairwise com-

parisons confirmed that DVM [DVF [ DVFM (P \ 0.001).

There was a significant two-way interaction Fatigue 9

Moment F[2,14] = 12.76, P \ 0.001], reflecting the fact

that DV increased during fatigue for the PR task and

dropped during the SU task (P \ 0.05).

The angle between the UCM and space of optimal

solutions

UANGLE, the dihedral angle between the UCM computed

with respect to {FTOT; MTOT} stabilization and the space of

optimal solutions defined with the ANIO approach, was

computed. This angle before fatigue, was larger than that

during fatigue, Ubefore
ANGLE [ U

during
ANGLE, on average, 87.49� ±

2.38� vs. 84.58� ± 3.29�, respectively. This difference

was, however, slightly below the level of significance

(P = 0.07). The one-sample t tests against 90� confirmed

that both Ubefore
ANGLE and Uduring

ANGLE were significantly different

from 90� (P \ 0.05).

Fig. 7 Two components of variance, a VUCM, b VORT and

c z-transformed DV (dimensionless) in the finger force space for the

FTOT related, MTOT related and {FTOT; MTOT} related analyses. PR

and SU represent pronation and supination, respectively. Variances

were quantified per degree of freedom of corresponding spaces and

normalized to the square of MVCIMRL. The average values across

subjects are presented with standard error bars
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Discussion

Only some of the main hypotheses formulated in the

Introduction have been confirmed. In particular, fatigue led

to less consistency in following an optimization principle

and larger values in the dihedral angle between the planes

of optimal solutions and of experimental observations (i.e.,

DANGLE). These observations are similar to the earlier

described differences between young and healthy elderly

persons (Park et al. 2011a). Fatigue produced changes in

the two components of finger force variance (VUCM and

VORT) that confirmed earlier observations only partly.

There was an increase in both VUCM and VORT during the

pronation (PR) tasks, with VUCM showing larger changes

(similar to Singh et al. 2010a, b). However, this was not the

case for the supination (SU) tasks, which showed, on

average, a drop in VUCM with fatigue, while VORT

increased. These results suggest an increase in the synergy

index during fatigue for PR tasks only. Further, we discuss

implications of the study for the effects of fatigue on

synergic action of fingers and for moments of force per-

formed into PR and SU.

Two aspects of multi-finger synergies

As in earlier studies (reviewed in Latash et al. 2007; Latash

2010), our understanding of synergies is based on two main

characteristics of action of redundant multi-element sys-

tems. The first is related to patterns of sharing of poten-

tially important performance variables across the elemental

variables. These patterns show consistency across ranges of

performance variables. For example, Li et al. (1998)

showed that shares of the total force produced during

pressing tasks by individual fingers are consistent over the

whole range of total force values. The second characteristic

has been described using different terms such as stability

and flexibility. It refers to an ability of the system to use

variable solutions to achieve highly consistent performance

over repeated attempts at the same task. For example, when

a person presses with two fingers and tries to produce the

same total force level in a series of trials, the individual

finger forces (or commands to fingers, ‘‘finger modes’’—

Zatsiorsky et al. 1998, 2002b; Li et al. 2002; Danion et al.

2003) show negative co-variation across trials (Latash et al.

2001; Scholz et al. 2002). If one considers the two char-

acteristics together, the former describes preferred areas in

the space of elemental variables, while the other describes

their co-variation potentially leading to different shapes of

data point clouds over repeated trials.

The uncontrolled manifold (UCM) hypothesis (Scholz

and Schöner 1999) has proven to provide a powerful

toolbox to analyze the latter feature by comparing variance

within two sub-spaces, the UCM corresponding to a fixed

value of a performance variable and the orthogonal sub-

space. In contrast, the ANIO deals with the former aspect,

i.e., the sharing aspect of synergies (Terekhov et al. 2010).

Unlike commonly used optimization methods, it does not

start with assuming a cost function based on some intuitive

considerations from physics, physiology or psychology

(Nubar and Contini 1961; Rosenbaum et al. 2001; Prilutsky

and Zatsiorsky 2002; Ait-Haddou et al. 2004) but analyzes

a cloud of data points obtained during performance that

covers a broad range of task variables. The ANIO proce-

dure results in a cost function, which, in case of four-finger

tasks with two constraints {FTOT; MTOT}, has been shown

to represent a second-order polynomial with person-spe-

cific coefficients (Park et al. 2010, 2011a). Further, the cost

function is used to compute an ‘‘optimal’’ data set for the

same values of the {FTOT; MTOT} constraints. The DANGLE

between this space and the space of original data may be

used as an index of consistency in following an optimiza-

tion principle described by the cost function.

Figure 8 illustrates the idea using a two-element task

with only one constraint, total force (FTOT) produced by

two fingers. The lines with a negative slope are the UCMs

for different FTOT values. Ellipses show possible experi-

mental data distributions. The line fitted to the observations

that cover the whole range represents the sub-space of

optimal solutions. It should be noted that it is not orthog-

onal to the UCMs (UANGLE \ 90�) and that the angle

between the sub-spaces of experimental data and optimal

solutions (DANGLE) is very small.

The two approaches seem to be incompatible since

direct optimization produces a single solution for every set

of task constraints, while the idea of flexibility/stability

assumes numerous solutions, mostly elongated along the

UCM as in Fig. 8. However, within the described scheme,

there is no incompatibility because optimization defines not

a single solution but the center of a distribution of possible

numerous solutions.

In the current study, the overall findings are well com-

patible with the described theory. Both before and during

fatigue, PCA of the finger force data showed that two PCs

accounted for well over 90% of total variance. It is

important that the data fit a plane equally well before and

after the fatiguing exercise, which justifies assuming a

quadratic polynomial cost function in both conditions. The

exact distribution of the total variance between the first two

PCs is of a lesser importance, and we will not consider this

difference here, particularly because it was small. The

computed cost functions produced sets of optimal solutions

that formed a plane that was nearly parallel to the plane of

experimental observations (DANGLE on the order of a few

degrees). When the subjects performed repeated tasks over

two sets of {FTOT; MTOT} combinations, VORT was sig-

nificantly smaller than VUCM for all analyses, both tasks,
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and both before and during fatigue. This may be interpreted

as multi-digit synergies stabilizing both FTOT and MTOT

simultaneously. By itself, this is not a trivial observation. It

supports a general idea that one of the major purposes of

synergies is to allow a multi-element system to participate

in several tasks simultaneously with minimal interference

between the tasks (Zhang et al. 2008; Gera et al. 2010).

Fatigue-induced changes in synergies

Fatigue led to significant changes in both characteristics of

multi-finger synergies. As expected, during fatigue, the

performance was less consistent in following an optimi-

zation principle, which was reflected in higher DANGLE

magnitudes. There were relatively minor changes in the

coefficients within the cost function. Only coefficients at

the second-order terms showed significant changes, an

increase in kI (for the I finger) and a decrease in kR (for the

R finger). Higher coefficients mean that producing force

with that particular finger leads to higher cost function

values that, by definition, are to be avoided. So, these

results may be interpreted as higher costs of using the

fatigued finger balanced naturally with lower costs for

force production by other fingers (although only effects for

the R finger reached significance).

The fatigued I finger decreased its contribution to PR

moments of force during both PR and SU tasks (when it

acted as a moment agonist and moment antagonist,

respectively); correspondingly, the share of the M finger in

PR moment production increased. A similar redistribution

happened within the RL finger pair: The share of the L

finger dropped, while the share of the R finger increased

(see Fig. 4). While the effect on the IM moment sharing

may be viewed as a direct consequence of I finger fatigue,

the effects on the RL moment sharing are less obvious. It is

possible that symmetry of the IM and RL sharing patterns

is a default, which is being followed under a variety of

conditions including the one we studied.

A number of earlier studies reported relatively minor

changes in accuracy of performing a variety of tasks by

multi-element systems after fatigue of one (or a few) of the

elements (Forestier and Nougier 1998; Côté et al. 2002,

2008; Huffenus et al. 2006; Gates and Dingwell 2008;

Fuller et al. 2009). Since fatigue is known to lead to an

increase in motor variability (Carpentier et al. 2001; Evans

et al. 2003; Allen and Proske 2006; Missenard et al. 2008,

2009; Contessa et al. 2009), these phenomena suggest that

multi-element systems afford the central nervous system an

advantage of being able to adjust to fatigue of an element

by adjustments in the coordination among the elements. An

increase in the relative amount of ‘‘good’’ variance (VUCM)

has indeed been documented in several earlier studies

(Singh et al. 2010a, b; Singh and Latash 2011). Importance

of redundancy for such effects have been indirectly sup-

ported by a study of Kruger et al. (2007) who reported no

increase in the synergy index after fatigue of all four

fingers.

Results of the current study have been unexpectedly

ambiguous with respect to effects of fatigue on the synergy

indices (DV). Only PR tasks showed changes in the

amounts of VUCM and VORT that could be expected from

the cited earlier studies. In contrast, during SU tasks, VUCM

dropped while VORT increased corresponding to a drop in

the synergy index. Earlier studies (Singh et al. 2010a, b)

used total force production tasks only. In such tasks sub-

jects naturally prefer finger force sharing patterns with

higher forces produced by the I and M fingers as compared

to the forces by the R and L fingers (Li et al. 1998;

Zatsiorsky et al. 1998). So, when there are no constraints

on MTOT, subjects naturally produce a PR moment of force

with respect to the mid-point between the M and R fingers.

Our results with PR MTOT production confirmed an

increase in the synergy index during fatigue, as in the cited

earlier studies.

There is an important difference between the PR and SU

tasks: The I finger that performed the fatiguing exercise

was a moment agonist in the PR tasks and moment

antagonist in the SU tasks. So, we can tentatively conclude

Fig. 8 An illustration of the main ideas with an imagined two-digit

force production task. Data over the first session (ANIO analysis) are

represented with large dots; data over the second session (UCM

analysis) are represented by ellipses. The lines with negative slopes

are the UCMs. Note the angle between the space (line) of optimal

solutions (the thick dashed line) and the UCM, which differs from 90�
(UANGLE \ 90�). Note the small angle between the space of

experimental observations (the thin solid line) and space of optimal

solutions
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that increased co-variation (stronger synergies) can be used

by the central nervous system only if the fatigued element

is an agonist within the task. This may be related to the

relative magnitude of the contribution of the fatigued ele-

ment to the task. If an element is an antagonist, its force is

typically much lower as compared to a comparable task in

which the element is an agonist. The lower magnitude of

force is typically associated with lower force variance

(Newell and Carlton 1988; Christou et al. 2002; Shapkova

et al. 2008). This low variance may not afford enough room

for an accurate adjustment of variance by other fingers.

It should be noted that the I and M fingers typically

show lower indices of variability as compared to the R and

L fingers (Gorniak et al. 2008). It is not surprising, there-

fore, that SU tasks that used the R and L fingers as moment

agonists were associated with significantly higher coeffi-

cients of variation than the PR tasks. Similar results were

obtained in a previous study (Park et al. 2010) but not

reported in that paper; we re-analyzed the data from that

study and confirmed the finding of significantly higher

coefficients of variation in the SU tasks. Fatigue led to

opposite changes in the finger force variance for the two

tasks such that the variance magnitudes nearly equalized

during fatigue. There was a significant difference between

the PR and SU tasks in the way the increased variance was

distributed between the UCM and the orthogonal sub-

space: During the PR task, it was primarily channeled into

VUCM, while during the SU task, it mostly contributed to an

increase in VORT.

Several recent studies have emphasized positive effects

on motor variability on motor performance associated with

repetitive actions (Kadefors et al. 1976; Granata et al.

1999; Madeleine et al. 2008; Madeleine and Madsen 2009).

Our results are in line with this line of thinking; they

suggest that an increase in variability of individual effec-

tors can attenuate adverse effects of fatigue on the com-

bined output of a redundant set of elements (although

confirmed for PR tasks only).

Comparing the effects of aging and fatigue

There is a surprising overlap between the effects of fatigue

found in this study and effects of aging described earlier

(Park et al. 2011a). It seems as if fatigue made our par-

ticipants older with respect to motor performance of their

hands. Indeed, both fatigue and aging led to (1) an increase

in the DANGLE; (2) an increase in the coefficients at the

second-order terms (k) for forces by fingers other than I

finger (the normalization by kI in the former study does not

allow direct comparisons of its changes between the stud-

ies); (3) a drop in the co-contraction index, CCI; and (4) a

drop in the share of the lateral fingers (I and L) in moment

production. The synergy index was lower for the elderly

participants in the earlier study, similar to the current

results for the SU task only.

The drop in CCI looks particularly counterintuitive. In

our study, as well as in the mentioned study of elderly

persons, lower values of CCI imply seemingly more eco-

nomic performance, which seems advantageous. This

advantage may be only seeming. Indeed, during fatigue,

subjects decreased the shares of MTOT produced by lateral

fingers (I and L). This means that relatively larger forces

had to be produced by the central fingers (M and R) to

reach required {FTOT; MTOT} combinations. Since the

central fingers had smaller lever arms, for a given MTOT,

larger force had to be produced by the agonist finger pair

(IM for PR tasks and RL for SU tasks). Since FTOT is lim-

ited, this leaves less force for the antagonist finger pair,

resulting in smaller CCI. So, the smaller CCI is a mechanical

necessity given the drop in the share of the lateral fingers.

This is an example of so-called chain effects (Zatsiorsky

et al. 2002a, b, 2003; Zatsiorsky and Latash 2004; Shim

et al. 2005) when a sequence of mechanically necessitated

cause–effect pairs leads to a non-trivial outcome.

Concluding comments

The main results of the study may be summarized as

changes in both aspects of multi-digit synergies, sharing

patterns and co-variation, following fatigue of a finger.

More subtle changes include the redistribution of the

moment of force between the central and lateral fingers

within each finger pair (IM and RL), changes in the co-

contraction index (CCI) and different effects of fatigue on

multi-finger synergies during PR and SU tasks.

There have been a few methodological changes in this

study as compared to the previous ones using the ANIO

approach. On the one hand, these changes were imple-

mented to avoid some of the earlier problems, such as

difficult {FTOT, MTOT} combinations with high MTOT and

low FTOT, as well as normalization of the coefficients of

the cost functions that made kI = 1 in all conditions. On

the other hand, these changes complicate comparisons with

earlier studies, which may be viewed as a limitation of the

current design.
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Appendix 1

Analytical inverse optimization (ANIO) approach

The optimization problem in the current study was defined as
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Min J ¼
P4

i¼1

giðFiÞ
Subject to FI þ FM þ FR þ FL ¼ a �MVCIMRL

dI � FI þ dM � FM þ dR � FR þ dL � FL

¼ b � 0:07 � dI �MVCI

ð10Þ

The two linear constraints are expressed as

CFT ¼ B
F ¼ FI FM FR FL½ �
C ¼ 1 1 1 1

dI dM dR dL

� � ð11Þ

B ¼ FTOT

MTOT

� �
:

The task involved two constraints (FTOT and MTOT

values) and four elemental variables (finger forces). Thus,

the solutions of this undetermined system were expected to

be confined to a two-dimensional surface in the four-

dimensional force space. Planarity of this surface was

checked using the PCA. The following computational

procedure explains how the optimization cost function is

obtained.

First, we identify whether the optimization problem is

splittable or not by observing the (4 9 4) matrix:

C
^

¼ I � CTðCCTÞ�1C ð12Þ

Second, we check whether the experimental data actually

lie on a hyperplane (and not for instance on a curved

hypersurface) and then define the observed hyperplane

mathematically as

A � FT ¼ b ð13Þ

where A is a 2 9 4 matrix composed of the transposed

vectors of the two lesser principal components obtained

from the PCA from the finger force data. A large per-

centage of the total variance explained by the two first

principal components was considered an indicator that

the data lie on a hyperplane. However, the data points

were not perfectly confined to a plane due to the vari-

ability of performance and instrumental noise. Also, the

plane computed from Eq. 13 is affected by experimental

errors.

Third, we compare the experimentally determined

hyperplane to the theoretical plane derived from the

uniqueness theorem. The experimental data must be fitted

by the following equation:

C
^

f 0ðFÞ ¼ 0; ð14Þ

where f 0ðFÞ ¼ ðf 01ðFIÞ; f 02ðFMÞ; f 03ðFRÞ; f 04ðFLÞÞT fi are

arbitrary continuously differentiable functions. At the

second step, the data are discovered to lie on the plane

and hence the function f 0i ð�Þ is linear:

f 0i ðFiÞ ¼ kiFi þ wi ð15Þ

where i = {index (I), middle (M), ring (R), and little (L)}.

Therefore,

fiðFiÞ ¼
ki

2
ðFiÞ2 þ wiFi: ð16Þ

The values of the coefficients of the second-order terms

ki can be determined by minimizing the dihedral angle

between the two planes: the plane of optimal solutions

C
^

f 0ðFÞ ¼ 0 and the plane of experimental observations

(A � FT = 0). The values of the coefficients of the first-

order terms wi were found to correspond to a minimal

vector length (w = (windex, wmiddle, wring, wlittle)
T) bringing

the theoretical and the experimental plane as close to each

other as possible. Vector w satisfy the following equation:

C
^

f 0ðFÞ ¼ C
^

ðKFi þ wÞ ð17Þ

where K = (kI, kM, kR, kL)T and w = (wI, wM, wR, wL)T.

Then, the functions gi in Eq. 12 are the following:

giðxiÞ ¼ rfiðFiÞ þ qiFi þ consti ð18Þ

where r is a non-zero number, consti can be any real

number and qi is any real number satisfying the equation

C
^

q ¼ 0 (Terekhov et al. 2010). Multiplication of the cost

function by a constant value or adding a constant value to it

does change the cost function essentially. Hence, we can

arbitrarily assume that r = 1 and consti = 0. According to

the uniqueness theorem, identification of the cost function

can be performed only up to unknown linear terms that are

parameterized by the values qi. We assume that qi = 0 in

order to simplify gi(xi). It must be kept in mind, however,

that the true cost function used by the CNS might have

these terms.

Uniqueness theorem (for the mathematical proof see

Terekhov et al. 2010)

The core of the ANIO approach is the theorem of

uniqueness that specifies conditions for unique (with some

restrictions) estimation of the objective functions. The

main idea of the theorem of uniqueness is to find necessary

conditions for the uniqueness of solutions in an inverse

optimization problem. An optimization problem (i.e., direct

optimization problem) with an additive objective function

and linear constraints is defined as

Let J : Rn ! R1

Min: JðxÞ ¼ g1ðx1Þ þ g2ðx2Þ þ � � � þ gnðxnÞ
Subject to: CXT ¼ B

ð19Þ

where X = (x1, x2,…, xn) [ Rn, gi is an unknown scalar

differentiable function with g0(�) [ 0. gi came from the

Lagrange minimum principle, which has a unique solution.
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On the contrary, the functions of gi can be computed from the

set of solutions X* (e.g., experimental data). This inverse

procedure is called the inverse optimization problem. C is a

k 9 n matrix and B is a k-dimension vector, k \ n.

First, assume that the optimization problem (19) with

k C 2 is non-splittable. If the inverse optimization is

splittable, the preliminary step is to split it until a non-

splittable subproblem is acquired. If the functions gi(xi) in

problem (19) are twice continuously differentiable (i.e.,

twice continuously differentiable functions fi) and f 0i is not

identically constant, complying C
^

f 0ðXÞ ¼ 0 for all X [ X*,

f 0ðXÞ ¼ ðf 01ðx1Þ; . . .; f 0nðxnÞÞT ð20Þ

and

C
^

¼ I � CTðCCTÞ�1C ð21Þ

then

giðxiÞ ¼ rf iðxiÞ þ qixi þ consti ð22Þ

for every xi 2 X�i , where X�i = {s| there is X [ X*: xi [ s}

and X* is the set of the solutions for all B [ Rk. The con-

stants qi satisfy the equation C
^

q ¼ 0 where q ¼ ðq1; . . .; qnÞT .

Primes designate derivatives.

If the experimental data correspond to solutions of an

inverse optimization problem with additive objective

function (gi) and linear constraints, equation C
^

f 0ðXÞ ¼ 0

(X [ X*) must be satisfied (i.e., the Lagrange principle).

The uniqueness theorem provides sufficient condition (i.e.,

C
^

f 0ðXÞ ¼ 0) for solving the inverse optimization problem

in a unique way up to linear terms.

Appendix 2

Uncontrolled manifold (UCM) analysis (see Latash

et al. 2002; Scholz et al. 2002 for details)

For FTOT, changes in the elemental variables (finger forces)

sum up to produce a change in FTOT:

dFTOT ¼ 1 1 1 1½ � � dFI dFM dFR dFL½ �T

ð23Þ

The UCM was defined as an orthogonal set of the vectors ei

in the space of the elemental forces that did not change the

net normal force, i.e.,

0 ¼ 1 1 1 1½ �ei ð24Þ

These directions were found by taking the null-space of the

Jacobian of this transformation ([1 1 1 1] ei). The mean-

free forces were then projected onto these directions and

summed to produce

fjj ¼
Xn�p

i

eT
i � df

� �
ei; ð25Þ

where n = 4 is the number of degrees of freedom of the

elemental variables and P = 1 is the number of degrees of

freedom of the performance variable (FTOT). The

component of the de-meaned forces orthogonal to the

null-space is given by

f? ¼ df � fjj ð26Þ

The amount of variance per degree of freedom parallel to

the UCM is

VUCM ¼
P

fjj
�� ��2

ðn� pÞNtrials

ð27Þ

The amount of variance per degree of freedom orthogonal

to the UCM is

VORT ¼
P

f?j j2

pNtrials

ð28Þ

The normalized difference between these variances is

quantified by a variable DV:

DV ¼ VUCM � VORT

VTOT

ð29Þ

where VTOT is the total variance, also quantified per degree

of freedom. If DV is positive, VUCM [ VORT, caused by

negative co-variation of the finger forces, which we inter-

pret as evidence for a force-stabilizing synergy. In contrast,

DV = 0 indicates independent variation of the finger for-

ces, while DV \ 0 indicates positive co-variation of the

individual finger forces, which contributes to variance of

FTOT.

A similar procedure was used to compute the two var-

iance components related to stabilization of MTOT. The

only difference was in using a different Jacobian corre-

sponding to the lever arms of individual finger forces, [dI

dM dR dL].

We also analyzed the data with respect to stabilization

of both FTOT and MTOT simultaneously. In that case, the

Jacobian was [1 1 1 1; dI dM dR dL]. The dimensionality of

VUCM for the analysis with respect to FTOT and MTOT

separately is three (one constraint), while the dimension-

ality of VUCM with respect to FTOT and MTOT simulta-

neously is two (two constraints).
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Motor abundance contributes to resolving multiple kinematic

task constraints. Mot Control 14:83–115

Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve

accuracy? A study of speed-accuracy trade-offs during finger

force production. Mot Control 12:151–172

Granata KP, Marras WS, Davis KG (1999) Variation in spinal load

and trunk dynamics during repeated lifting exertions. Clin

Biomech 14:367–375

Huffenus AF, Amarantini D, Forestier N (2006) Effects of distal and

proximal arm muscles fatigue on multi-joint movement organi-

zation. Exp Brain Res 170:438–447

Kadefors R, Petersen I, Herberts P (1976) Muscular reaction to

welding work: an electromyographic investigation. Ergonomics

19:543–548

Kaiser HF (1960) The application of electronic computers to factor

analysis. Psychol Meas 20:141–151

Kang N, Shinohara M, Zatsiorsky VM, Latash ML (2004) Learning

multi-finger synergies: an uncontrolled manifold analysis. Exp

Brain Res 157:336–350

Kruger ES, Hoopes JA, Cordial RJ, Li S (2007) Error compensation

during finger force production after one- and four-finger

voluntarily fatiguing exercise. Exp Brain Res 181:461–468

Latash ML (2010) Motor synergies and the equilibrium-point

hypothesis. Mot Control 14:294–322

Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of
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Scholz JP, Schöner G (1999) The uncontrolled manifold concept:

identifying control variables for a functional task. Exp Brain Res

126:289–306

Scholz JP, Danion F, Latash ML, Schöner G (2002) Understanding
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