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Abstract This study tests the following hypotheses in

multi-digit circular object prehension: the principle of

superposition (i.e., a complex action can be decom-

posed into independently controlled sub-actions) and

the hierarchical organization (i.e., individual fingers at

the lower level are coordinated to generate a desired

task-specific outcome of the virtual finger at the higher

level). Subjects performed 25 trials while statically

holding a circular handle instrumented with five six-

component force/moment sensors under seven external

torque conditions. We performed a principal compo-

nent (PC) analysis on forces and moments of the

thumb and virtual finger (VF: an imagined finger pro-

ducing the same mechanical effects of all finger forces

and moments combined) to test the applicability of the

principle of superposition in a circular object prehen-

sion. The synergy indices, measuring synergic actions

of the individual finger (IF) moments for the stabil-

ization of the VF moment, were calculated to test the

hierarchical organization. Mixed-effect ANOVAs were

used to test the dependent variable differences for

different external torque conditions and different fin-

gers at the VF and IF levels. The PC analysis showed

that the elemental variables were decoupled into two

groups: one group related to grasping stability control

(normal force control) and the other group associated

with rotational equilibrium control (tangential force

control), which supports the principle of superposition.

The synergy indices were always positive, suggesting

error compensations between IF moments for the VF

moment stabilization, which confirms the hierarchical

organization of multi-digit prehension.

Keywords Finger � Virtual finger � Circular object �
Principle of superposition � Hierarchical control �
Variability � UCM

Introduction

Everyday motor tasks demand the central nervous

system (CNS) to be capable of coordinating multiple

effectors involved in achieving the task objectives. This

often requires the CNS to govern more effectors than

are minimally necessary. This problem has been known

as the ‘motor redundancy/abundance’ (Bernstein 1935,

1967; Turvey 1990; Latash 2000). Multi-digit prehen-

sion is performed by a kinetically redundant system,

e.g., there are typically more digits involved in the

process of turning a door knob or holding a glass of

water than the two digits which are minimally required.

The redundant hand system allows an infinite number

of solutions for a same prehension task (Santello and

Soechting 2000; Zatsiorsky et al. 2003; Shim et al.

2005a, 2006c). Thus, the central nervous system (CNS)

needs to decide what specific solution(s) of forces and

moments of force to be used to solve the redundancy

problem. Previous studies have suggested that the CNS

solves the problem of motor redundancy not by

having one specific solution but by allowing a family of
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solutions that satisfy task requirements (Gelfand and

Tsetlin 1966; Scholz and Schoner 1999; d’Avella et al.

2003; Shim et al. 2004c, 2005b; Latash et al. 2005a).

Recent studies on multi-digit prehension of rectan-

gular objects employed trial-to-trial variability analysis

and provided evidences of two independent groups of

mechanical variables in static prehension (Shim et al.

2003b, 2005a; Zatsiorsky et al. 2004): one group con-

tains grasping forces (normal forces) that are related to

the ‘‘stability of grasping’’ and the other group includes

load forces (tangential forces) and moments of normal

and tangential forces that are associated with the

‘‘rotational equilibrium’’ of the hand-held object. This

claim was made by showing coupling of variables in

each group and decoupling of variables between the

two groups. This type of decoupled control was first

suggested in robotics and called the ‘principle of

superposition’ (Arimoto and Nguyen 2001; Arimoto

et al. 2001; Doulgeri et al. 2002). According to the

principle of superposition, some sub-actions (e.g.,

grasping a hand-held object and rotating the object)

can be controlled by independent control processes

and the total processing/computation time can be re-

duced by employing this strategy. The present context

of grasping stability has been limited to slip prevention.

Although previous experiments showed that the

principle of superposition was also supported in static

human prehension (Shim et al. 2003b, 2005a; Zatsior-

sky et al. 2004), the geometry of the hand-held objects

used in the previous experiments was limited to a

‘rectangular/parallelepiped shape’ which necessitates

the coupling of grasping forces (e.g., the grasping for-

ces of a thumb and fingers should cancel out to be zero)

and the coupling of load forces and moments of forces

(e.g., the sum of the load forces of all digits should

cancel out the weight of a grasping object). Due to the

pre-imposed relationship between the mechanical

variables during prehension of a rectangular object, the

generalizability of the principle of superposition is

currently questionable for prehension of objects in

other geometric shapes which do necessitate the cou-

pling of mechanical variables. Here an interesting

question arises. Will the principle of superposition still

be valid when grasping force of the thumb (e.g., the

thumb normal force) and the grasping force of indi-

vidual fingers (e.g., the sum of individual finger normal

forces) are not mechanically coupled?

In this study we used a circular object to study the

generalizability of the principle of superposition be-

cause prehension of a circular object presents a

geometry in which the scalar sum of the individual

finger (IF) normal forces [defined as the virtual finger

(VF) normal force] is not necessarily required to be the

same as the thumb normal force. In prehension of a

circular object, therefore, it is not clear whether the

thumb and VF normal forces would even form a group

of coupled variables. If the CNS controls the thumb

and VF normal forces using one command regardless

of the geometry of the hand-held objects, we may ex-

pect to find a coupling of thumb and VF normal forces

and a decoupling of normal and tangential forces

during circular object prehension, thus supporting the

generalizability of the principle of superposition in a

circular object prehension.

Previous theoretical studies (Cutkosky and Howe

1990; Iberall 1997; Yoshikawa 1999) as well as exper-

imental studies on hand and finger actions (Santello

and Soechting 1997; Baud-Bovy and Soechting 2001;

Shim et al. 2003b, 2005a) have suggested a hierarchical

control of multi-digit prehension based on the notions

of the VF and IF, i.e., at the higher level (VF level) the

thumb and VF are coordinated to satisfy task

mechanics whereas at the lower level (IF level) the

individual fingers are coordinated to generate a desired

task-specific outcome of the virtual finger during multi-

digit manipulation tasks. Previous studies on multi-di-

git pressing (Li et al. 1998; Shinohara et al. 2003) and

all-digit rectangular object prehension (Shim et al.

2004c, 2005b, 2006c) used the indices of covariation

(DVar and DVarnorm; these variables are similar to

negated covariations between elemental variables; see

Methods for computational details) between finger

forces and moments of force, and showed that the CNS

makes fine adjustments of IF forces/moments at the

lower level to stabilize VF forces/moments at the

higher level. Both multi-digit pressing and multi-digit

prehension of a rectangular object offer parallel ac-

tions of fingers. Therefore, it is currently unknown

whether the hierarchical control hypothesis is valid for

other multi-digit manipulation tasks, especially for a

task encouraging non-parallel actions of fingers such as

multi-digit prehension of a circular object.

We asked subjects to statically hold a circular handle

multiple times under systematically varied external

torques and recorded forces and moments of force at

each digit contact. Although the terms ‘torque’ and

‘moment of force’ are used interchangeably in

mechanics, in this paper we will use ‘torque’ to desig-

nate the external torque (the rotational force exter-

nally imposed by locating a load at different positions;

see Methods for details) and use ‘moment of force’ or

‘moment’ to signify a rotational force produced by a

subject to overcome the external torque during static

prehension. We analyzed intra-subject trial-to-trial

variability of forces and moments of force produced by

hand digits. This approach is based on the idea that the
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CNS prefers a family of solutions rather than one

specific solution for a redundant motor task. Thus,

studying a family of solutions recorded from multiple

trials for the same motor task may reveal the strategies

used by the CNS to resolve the motor redundancy. The

previous work as well as the theoretical position, which

support the idea that the strategies utilized by the CNS

in multi-digit grasping should be invariant to tasks,

leads the hypothesis that the principle of superposition

and the hierarchical organization of multi-digit control

are also valid in circular object prehension task.

Methods

Subjects

Eight right-handed males participated in this study as

subjects (age: 27.3 ± 2.7 years, weight: 70.9 ± 3.8,

height: 177.2 ± 5.1 cm, hand length: 20.1 ± 2.2 cm, and

hand width: 9.0 ± 2.7). The hand lengths were mea-

sured between the distal crease of the wrist and the

middle finger tip when a subject positioned the palm

side of the right hand and the lower arm on a table with

all finger joints extended. The hand width was mea-

sured between the radial side of the index finger

metacarpal joint and the ulnar side of the little finger

metacarpal joint. All subjects gave informed consent

according to the protocol approved by the University of

Maryland after the purpose and the involved experi-

mental procedures of the study were explained to them.

Equipment

Five six-component sensors (Nano-17, ATI Industrial

Automation, Garner, NC) were attached to a circular

aluminum handle to which an aluminum beam

(3.8 · 52.0 · 0.6 cm) was fixed (Fig. 1a). The recorded

angular positions of the digits from the wooden circular

object prehension were used to specify the angular

positions of five force sensors. The sensors were

aligned in the X–Y plane (a vertical plane). Aluminum

caps were attached to the surface of each sensor. The

bottom of the cap was flat and mounted on the surface

of a sensor while the top part was round (the curvature

k = 0.22 cm–1) to accommodate the curvature of the

circle shown as a dotted circle in Fig. 1a. Sandpaper

[100-grit; static friction coefficients between the digit

tip and the contact surface was 1.5; measured previ-

ously (Zatsiorsky et al. 2002)] was placed on the round

contact surface of each cap to increase the friction

between the digits and the caps. The radius (ro
l )

between the centre of the circular handle (OG) and the

contact surface was 4.5 cm for each sensor. The force

components along the three orthogonal axes and three

moment components about the three axes in the local

reference system (LRS) for each sensor were recorded

(Fig. 1b). A load (0.41 kg) was attached to the beam

with an eyehook that could be positioned at seven

different positions of the long beam with 10 cm inter-

vals between adjacent positions. Positioning the weight

at different positions produced different external tor-

ques on the handle system about the Z-axis (see the

caption for Fig. 1). A plastic bubble level (Hi Vis Line

Level, Stanley Tools, New Britain, CT) was positioned

at the center of the horizontal beam so that subjects

could monitor the consistent angular position of the

handle and beam (Shim et al. 2003b). The total weight

of the system, which consisted of the circular handle,

beam, transducer, and suspended load, was 14.9 N.

A total of 30 analogue signals from the sensors were

routed to two synchronized 12-bit analogue-digital

converters (PCI-6031 and PCI-6033, National Instru-

ment, Austin, TX) and processed and saved in a cus-

tomized LabVIEW program (LabVIEW 7.1, National

Instrument, Austin, TX) on a desktop computer (Dell

Dimension E510, Austin, TX). The sampling frequency

was set at 50 Hz.

Experimental procedure

The subjects washed their hands with soap and warm

water to normalize the skin condition. The subjects

were asked to hold a wooden circular handle

(radius = 4.5 cm; the same size as the experimental

handle used for force and moment recording) and the

relative finger positions with respect to the thumb

position were measured (index: 109.0� ± 12.6�, middle:

156.3� ± 11.2�, ring: 187.0� ± 8.2�, and little: 240.8� ±

15.4�; mean ± SD across subjects are presented). The

subjects had a pre-testing session (two trials for each

external torque condition) to be familiarized with the

experimental procedure and testing-device. During the

trials, the subjects sat in a chair and positioned their

right upper arm on a wrist-forearm brace that was fixed

to a table. The forearm was held stationary with Velcro

straps. The upper arm was flexed 20� in the sagittal

plane and the forearm was aligned parallel to the

sagittal axis of the subject. For each trial, the subjects

placed each digit on each six-component sensor and

held the circular handle with the thumb at the top

(Fig. 1a). The task for the subjects was to hold the

handle with minimum effort while keeping the hori-

zontal beam parallel to the transverse plane and

maintaining the handle system in equilibrium. The task

was achieved by monitoring and maintaining a bubble
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at the center of the bubble level (Shim et al. 2003b).

The 0.41 kg load was located at seven different posi-

tions along the horizontal beam to create seven dif-

ferent external toques about Z-axis (i.e.,–1.2, –0.8, –0.4,

0, 0.4, 0.8, 1.2 Nm). The positive and negative torques

required subjects to generate pronation and supination

efforts, respectively. The pronation and supination ef-

forts are respectively compatible to opening and clos-

ing efforts for a door knob and a jar cap in everyday

circular object manipulations. To help the subjects

achieve a stable trial-to-trial performance, the forearm,

wrist, and hand positions were fixed and checked

before every trial. In addition, the subjects were in-

structed to hold the circular handle exerting minimal

force while placing the fingertip centers at the center of

the sensor caps. Hyperextended joint configurations

were not allowed for any phalangeal joints of the hand.

Each subject performed 25 trials for each external

torque condition. There were a total of 175 trials for

each subject. Data recording started when a subject

announced comfortable holding of the handle.

Before each trial, all signals from 30 channels were

zeroed. The sampling frequency was 50 Hz and each

trial was recorded for 6 s. A rest interval was given to
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Fig. 1 a Schematic illustration of an aluminum handle (gray
circle with a large hollow inside) and six-component sensors
(white rectangles) at digit contacts. b Detailed schematic
illustration of the little finger producing a force at a contact.
OG: origin of the global reference system of coordinates (GRS),
X: X-axis in GRS, Y: Y-axis in GRS (Z-axis is not shown, but its
direction follows the right-handed coordinate system and its
positive direction is from paper to the reader), OL: origin of local
reference system of coordinates (LRS) of the little finger sensor,
xl: x-axis in LRS of little finger sensor, yl: y-axis in LRS of the
little finger sensor, mz

l : moment about z-axis in LRS of little

finger sensor (z-axis in LRS for each sensor is parallel to Z-axes
in GRS), Fl: little finger force, Fn

l : little finger normal force, Ft
l:

little finger tangential force, do
l : position of LRS origin in GRS,

ro
l : position of little finger centre of pressure (CoP) in GRS, ho

l :
angular position of do

l in GRS. The LRS origin (OL) was fixed to
the center of the contact surface of the sensor and a cap (shown
gray) was fixed on the sensor surface. The distance between the
apex of the cap and OL was ~0.81 mm. External torques were
systematically changed by hanging the load at different positions
along the horizontal beam. b Shows –0.8 Nm external torque
condition. The figures are not drawn to scale
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the subject between trials and torque conditions to

minimize fatigue. The minimum rest interval between

trials and between torque conditions were 10 s and

5 min, respectively. The order of the external torque

conditions was randomized and balanced.

Data analysis

The recorded force and moment data were averaged

over the second half of the 6-s period for each trial for

the following analysis. We analyzed normal and tan-

gential forces in the X–Y plane and moments of tan-

gential forces orthogonal to the plane. Since sticking a

digit tip to the contact surface was not possible in this

experiment [so-called ‘soft contact model’ (Mason and

Salisbury 1985; Shimoga and Goldenberg 1996; Arim-

oto et al. 2001; Nguyen and Arimoto 2002)], a free

moment (Zatsiorsky 2002; Shim et al. 2004b, 2005a)

about the direction of a normal force was possible only

due to the friction between the digit tip and the contact

surface. However, we did not consider this component

because it did not contribute to the task moment about

the Z-axis and the magnitude of this component re-

corded was ignorable. The moment produced by each

digit about the z-axis could be expressed as the sum of

the moment produced by the force along the y-axis in

LRS (Fy
j ; directly recorded from the sensor) and mo-

ment about the z-axis at the center of the sensor sur-

face (mz
j ) (Eq. 1). In the present experiment, the digits

were not in direct contact with the sensors, but rather

in contact with the sensor caps. The moment mz
j is due

to the distance from the LRS origin (OL) where mz
j was

measured to the point on the sensor cap where the digit

force was applied.

The force components measured in the LRS origin

(OL) were converted into the components in GRS

using the direction cosines (Eq. 2). These components

and the moment values about the Z-axis in GRS (MZ
j )

computed from Eq. (1) were then used to compute the

tangential force components (Ft
j) at the digit contact on

the cap (Eq. 3). The normal force component was

calculated from Eq. (3). Note that the force measured

at the LRS origin is equivalent to the force produced

by the digit in terms of its magnitude and direction.

M
j
Z ¼ mj

z þ dj
o � Fj

y;

j ¼ fthumb; index;middle; ring; littleg
ð1Þ

F
j
X

F
j
Y

" #
¼ cos hj

o � sin hj
o

sin hj
o cos hj

o

" #
Fj

x

Fj
y

" #
;

j ¼ fthumb; index;middle; ring; littleg
ð2Þ

F
j
t ¼M

j
Z=rl

o and Fj
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFj

XÞ
2 þ ðFj

YÞ
2 � ðFj

t Þ2
q

;

j ¼ fthumb; index;middle; ring; littleg
ð3Þ

VF normal and tangential forces (Fn
vf and Ft

vf) were

calculated, respectively, as the sum of IF (index,

middle, ring, and little) normal forces and the sum of

IF tangential forces (Eq. 4). Note that the VF normal

and tangential forces calculated in Eq. (4) are scalars.

The IF normal forces or VF normal force do not

produce a moment of force about the axis of rotation

(OG) because all IF normal forces pass through the axis

of rotation and have zero moment arms (Eq. 5). VF

normal and tangential forces are the sums of normal

forces (i.e., grasping forces) and tangential forces (i.e.,

forces causing moments of force about OG) of IF in

each LRS, respectively. Hence, VF normal and

tangential forces are not horizontal (Y-axis) and

vertical (X-axis) forces in GRS because each axis in

LRS is not parallel to the corresponding axis in GRS

except Z-axis.

Fvf
n

Fvf
t

" #
¼

P4
j¼1

Fj
n

P4
j¼1

F
j
t

2
66664

3
77775; j ¼ findex, middle, ring, littleg

ð4Þ

MZ ¼Mth
Z þMvf

Z ¼ ro � F th
T þ ro � Fvf

t ¼ �T;

Trepresents an external torque
ð5Þ

For the 25 trials for each external torque condition, the

variances of IF moments (Varj, j = index, middle, ring,

little) and the variance of the VF moment (Vartot)

were computed across 25 trials for each external torque

condition and each subject. The sum of the variances of

IF moments ð
P4

j¼1 VarjÞ was also computed across the

trials. For further analysis, the difference betweenP4
j¼1

Varj and Vartot was computed (Eq. 6) and

normalized by
P4
j¼1

Varj (Eq. 7).

DVar¼
X4

j¼1

Varj�Vartot; j¼findex;middle;ring; littleg

ð6Þ

DVarnorm ¼
X4

j¼1

Varj �Vartot

" #,X4

j¼1

Varj;

j ¼ findex;middle; ring; littleg
ð7Þ
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Note, when DVar > 0 and DVarnorm > 0, negative co-

variations among the individual finger moments dom-

inate, whereas when DVar < 0 and DVarnorm < 0,

positive covariations among the individual finger mo-

ments prevail. These indices have been used as multi-

digit synergy strength in previous studies to investigate

covariation profiles between individual finger normal

forces (Li et al. 1998; Shim et al. 2003a, 2004c, 2005b,

2006c; Shinohara et al. 2003, 2004). In this study,

however, the indices are used to study synergic actions

between individual finger tangential forces.

Statistical analysis

Mixed-effect ANOVAs with the factors of EXTER-

NAL TORQUE (seven levels: –1.2, –0.8, –0.4, 0, 0.4,

0.8, and 1.2 Nm), THUMB-VF (two levels: thumb and

VF), and FINGER (four levels: index, middle, ring,

and little fingers) were used to investigate the differ-

ences of dependent variables between experimental

conditions and fingers at different hierarchical levels.

Linear regression was used to characterize the

relations of variables. Pearson coefficients of correla-

tion (r) were computed and then corrected for noise

and error propagations (Taylor 1997) in MatLAB.

The uncertainty or error affects the values of coeffi-

cients of correlation, i.e., the magnitudes of coeffi-

cients decrease with error propagations. The true

coefficients of correlation, after the errors were

eliminated, were computed [see Shim et al. (2003b)

for computational details]. The true coefficients of

correlation are usually larger in magnitude than the

coefficients initially computed. In order to test the

differences between two regression lines for negative

and positive torque conditions, the slopes of the

regression lines were statistically compared (Neter

and Wasserman 1974).

For each external torque condition, sets of variables

at the VF level (thumb and VF normal and tangential

forces) were grouped, and coefficients of correlation

between the variables were computed and corrected

for noise and error propagations. The corrected cor-

relations were used to construct a correlation matrix.

This matrix was used to perform a principal component

analysis (PCA) with a variance maximizing (varimax)

rotation in MatLAB. The eigenvectors with eigen-

values >1 (Kaiser Criterion) were extracted as princi-

pal components (PCs) (Kaiser 1960) and the loading

coefficients for each variable were calculated in the

PCs. A customary cutoff loading coefficient of 0.4 was

used as a minimal significant loading coefficient

(Krishnamoorthy et al. 2003; Shim et al. 2005a).

Results

The virtual finger (VF) level

At the VF level of analysis, only the thumb and VF

normal and tangential forces were considered, but the

moments of normal and tangential forces were not

included: moments of thumb and VF normal forces are

always zero because the normal forces pass through the

center of rotation (OG in Fig. 1a) and the moment

arms are all zero. The moments of thumb and VF

tangential forces were not included because of the

perfect linear relationship between the moments and

the forces [i.e., the moments of tangential forces are

simply calculated by multiplying the constant moment

arm (ro = 4.5 cm) and the tangential forces].

VF and thumb force changes with external torque

The normal force magnitudes of both VF and thumb

increased systematically with the external torque

magnitude (Fig. 2a). For each external torque condi-

tion, the VF normal forces were always larger than the

thumb normal forces. This finding is expected from the

circular geometry of the handle which causes the non-

parallel normal forces of individual fingers.

These findings were supported by two-way repeated-

measures ANOVA with the factors of EXTERNAL

TORQUE and THUMB-VF, which showed the signif-

icant effects of EXTERNAL TORQUE [F(6,42) =

187.7, P < 0.001], THUMB-VF [F(1,7) = 1133.5,

P < 0.001], and EXTERNAL TORQUE · THUMB-

VF [F(6,42) = 19.7, P < 0.001]. The tangential forces of

the VF and thumb also increased with the external

torque. The VF tangential force was larger than the

thumb tangential force for the negative external torque

conditions (supination effort by subjects) whereas the

VF and thumb tangential forces for positive torque

conditions (pronation effort by subjects) showed similar

values. These findings were supported by two-way

repeated-measures ANOVA with the factors of

EXTERNAL TORQUE and THUMB-VF, which

showed the significant effects of EXTERNAL TOR-

QUE [F(6,42) = 7321.6, P < 0.001], VF force [F(1,7) =

30.2, P = 0.001], and EXTERNAL TORQUE ·
THUMB-VF [F(6,42) = 64.3, P < 0.001]. Thumb and

VF normal forces increased linearly together for each

torque direction (Fig. 2c). It was also true for the thumb

and VF tangential forces (Fig. 2d). The ratios of the VF

normal force to the thumb normal force were larger for

positive torque conditions than for negative torque

conditions (Fig. 2c) while the tangential forces were
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larger for negative torque conditions (Fig. 2d). These

findings were supported by the significant (P < 0.01)

differences of the slopes (1.0952 vs. 0.8841 in Fig. 2c and

2.4624 vs. 1.0576 in Fig. 2d) between the positive and

negative torque conditions.

Inter-relations among VF and thumb normal

and tangential forces

The trial-to-trial relations between the VF and thumb

forces are shown in Fig. 3. The VF and thumb tan-

gential forces are mechanically coupled in static equi-

librium (Fig. 3b) because an increase in VF tangential

force should accompany a decrease in thumb tangen-

tial force with the same magnitude and vice versa due

to their relationship in static mechanics to keep the

resultant moment equal and opposite to the external

torque (Eq. 5). Thus, the high coefficients of correla-

tion found between the VF and thumb tangential for-

ces are expected (Fig. 3b). The large coefficients of

correlation between the VF and thumb normal forces

(Fig. 3a), on the other hand, are not necessitated by

mechanics because the VF normal force is not required

to be coupled with the thumb normal force (Eq. 4).

However, the VF and thumb normal forces showed

close-to-perfect coefficients of correlation for each

external moment condition for each subject. In gen-

eral, the magnitudes of coefficients (|r|) between the

normal forces were even larger than those between the

tangential forces.

Principal component analysis (PCA) on thumb

and VF normal and tangential forces

The PCA on all VF level variables (thumb and VF

normal and tangential forces; Fn
th, Ft

th, Fn
vf, and Ft

vf)

revealed two PCs (PC1 and PC2) that accounted for

96.56 ± 0.95% (average ± SD across external torque

conditions after the results were averaged across the

subjects for each external torque condition) of the total

variance. The loadings for each variable were calcu-

lated for PC1 and PC2 (Table 1). The thumb and VF

normal forces had large loadings (absolute val-

ues > 0.64) in the same PCs (e.g., PC1 for –1.2, –0.8, 0,

0.4, 0.8, and 1.2 Nm and PC2 for –0.4 Nm in Table 1)

and small (absolute values <0.35) loadings in the other

PCs, whereas the thumb and VF tangential forces had

large loadings in the latter PCs and small loading sin

the former PCs. This data structure implies a decou-

pling between the normal forces of thumb and VF and

the tangential forces of thumb and VF, which supports

the principle of superposition. These findings were true

for all external torque conditions in each subject. The

large loadings of thumb and VF tangential forces in the

same PCs and the opposite signs are necessitated by the

static equilibrium: the mechanically necessitated nega-

tive correlation between the thumb and VF tangential
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forces (Eq. 5). However, note that the large loadings of

VF and thumb normal forces in the same PC are not

completely required by the static equilibrium.

Variability of thumb and VF forces

The trial-to-trial variability of the thumb and VF nor-

mal and tangential forces increased with the external

torque magnitude. The larger trial-to-trial variabilities

for larger magnitudes of external torques are reflected

in greater distributions of trial data points along the

regression lines for larger magnitudes of external tor-

ques in Fig. 3a and b. The larger variability was found

for the negative external torque conditions than the

positive ones. These findings were supported by two-

way repeated-measures ANOVAs with the factors of

EXTERNAL TORQUE and THUMB-VF, which

showed the significant effects of EXTERNAL TOR-

QUE [F(6,42) = 9.4, P < 0.001] and THUMB-VF

[F(1,7) = 19.7, P < 0.005] in normal forces and the

significant effect of EXTERNAL TORQUE

[F(6,42) = 25.6, P < 0.001] for tangential forces. The

other factors or interaction effects were not significant.

When the variability was plotted against the force

magnitudes (Fig. 4c, d), the increasing trends of the

variability with force magnitude were found.

In summary, the results from the analysis of thumb

and VF showed that the normal and tangential force

magnitudes of both VF and thumb increased system-

atically with the external torque magnitude. PCA

showed a decoupling between the normal forces of

thumb and VF and the tangential forces of thumb and

VF, which supports the principle of superposition. In

addition, the larger variability was found for the neg-

ative external torque conditions than the positive ones.

The individual finger (IF) level

At the IF level of analysis, the individual finger (index,

middle, ring, and little) normal (Fn
j and Fn

j , j = index,
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vf). All coefficients of correlation are significant (P < 0.01) and
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the directions of the moments produced by the tangential forces
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Table 1 Loadings of principal components (PC1 and PC2) of all
variables at the virtual finger (VF) level

Variable PC1 PC2

–1.2 Nm Fn
th 0.96 –0.25

FT
th –0.28 0.94

Fn
vf 0.97 –0.22

Ft
vf 0.20 –0.97

–1.8 Nm Fn
th 0.91 0.35

FT
th –0.34 –0.84

Fn
vf 0.96 0.24

Ft
vf 0.22 0.97

–0.4 Nm Fn
th –0.29 0.93

FT
th 0.89 –0.31

Fn
vf –0.24 0.96

Ft
vf –0.96 0.23

0 Nm Fn
th 0.98 0.04

FT
th –0.07 0.98

Fn
vf 0.98 –0.03

Ft
vf –0.08 –0.98

0.4 Nm Fn
th 0.97 0.10

FT
th –0.24 –0.85

Fn
vf 0.91 0.28

Ft
vf 0.21 0.89

0.8 Nm Fn
th 0.93 –0.22

FT
th –0.27 0.89

Fn
vf 0.88 –0.26

Ft
vf 0.32 –0.64

1.2 Nm Fn
th 0.98 0.03

FT
th –0.11 –0.94

Fn
vf 0.97 0.13

Ft
vf 0.04 0.97

Note that Fn
th and Fn

vf have large loadings in PC1 or PC2 in which
FT

th and Ft
vf have relatively small loadings and vice versa. Data are

from a representative subject

Fth
n thumb normal force, FT

th thumb tangential force, Fn
vf VF

normal force (sum of finger normal forces), and Ft
vf VF tangential

force (sum of finger tangential forces)
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middle, ring, little) and tangential forces (Ft
j and Ft

j)

were considered.

IF force changes with external torque

The IF normal and tangential force magnitudes in-

creased with the external torque magnitude (Fig. 5a, b).

This finding was supported by two-way repeated-mea-

sures ANOVAs with the factors of EXTERNAL

TORQUE and THUMB-VF, which showed the signifi-

cant effects of EXTERNAL TORQUE [F(6,42) =

122.6, P < 0.001], THUMB-VF [F(3,21) = 60.6,

P < 0.001], and EXTERNAL TORQUE · THUMB-VF

[F(18,126) = 46.2, P < 0.001] for normal forces and

significant effects of EXTERNAL TORQUE [F(6,42) =

95.7, P < 0.001], FINGER [F(3,21) = 1390.3, P < 0.001],

and EXTERNAL TORQUE · THUMB-VF [F(18,126)

= 30.0, P < 0.001] for tangential forces.

Variability of IF forces

The trial-to-trial variability of IF normal and tangential

forces increased with the external torque magnitude

(Fig. 6a, b). This finding was supported by two-way

repeated-measures ANOVAs with the factors of

EXTERNAL TORQUE and FINGER, which showed

the significant effects of EXTERNAL TORQUE

[F(6,42) = 15.3, P < 0.001], FINGER [F(3,21) = 19.3,

P < 0.001], and EXTERNAL TORQUE · FINGER

[F(18,126) = 3.2, P < 0.001] for normal forces and the

significant effects of EXTERNAL TORQUE

[F(6,42) = 54.7, P < 0.001], FINGER [F(3,21) = 37.6,

P < 0.001], and EXTERNAL TORQUE · FINGER

[F(18,126) = 12.1, P < 0.001] for tangential forces.

When the variabilities were plotted against the force

magnitudes (Fig. 6c, d), the normal and tangential

forces showed ‘rotated V-shape’ and ‘V-shape’,

respectively.

Finger synergy strength indices (DVar and DVarnorm)

To quantify finger interactions during the moment

production tasks, the indices (DVar and DVarnorm)

reflecting the difference between the sum of the vari-

ances of the moments of IF tangential forces and the

variance of the resultant moment were computed

(Eqs. 6, 7). Note that DVar and DVarnorm are multi-

digit synergy indices. DVar and DVarnorm revealed

positive values for all external torque conditions. This

suggests that the negative covariations (i.e., error

compensations) between IF moments prevail. DVar

systematically increased with the external torque

magnitude (Fig. 7a). DVar values were in general lar-

ger for negative external torque conditions than posi-

tive torque conditions. This finding was also true for
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DVarnorm (Fig. 7a) although the changes of DVarnorm

(M-shape) with the external torque were different from

those of DVar (V-shape). These findings were sup-

ported by one-way repeated-measures ANOVAs per-

formed on DVar and DVarnorm with the factors of

EXTERNAL TORQUE, which showed significant

effects for DVar [F(6,42) = 20.4, P < 0.001] and

DVarnorm [F(6,42) = 3.4, P < 0.005].

In summary, the magnitude and variability of indi-

vidual finger normal and tangential forces increased with

the external torque. The multi-digit synergy strength

increased with the external torque magnitude. Gener-

ally, synergy strength was greater for negative external

torque conditions than positive torque conditions.

Discussion

In this study, we investigated the trial-to-trial vari-

abilities of digit forces and moments for the same

multi-digit prehension tasks in order to test the

hypotheses of the principle of superposition and the

hierarchical organization of prehension control for

circular object prehension. The PCA showed that the

elemental variables were clearly decoupled into two

groups: one group comprising normal forces and the

other group containing tangential forces, which sup-

ports the first hypothesis. The synergy indices, DVar

and DVarnorm, were always positive (negative covaria-

tions between IF moments), which confirms the second
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hypothesis. The discussion addresses the following

topics: the principle of superposition in circular object

prehension, hierarchical organization of prehension

and the uncontrolled manifold (UCM) hypothesis, and

trial-to-trial variability of forces.

Principle of superposition

The principle of superposition was originally suggested

in robotics (Arimoto and Nguyen 2001; Arimoto et al.

2001, 2003) and has been confirmed in two-dimensional

and three-dimensional prehension tasks in humans

(Shim et al. 2003b, 2005a, 2006c).

During static prehension of an upright rectangular

object, there exist two static constraints to be satisfied:

all forces should cancel out to be zero ð
P

Fj
!
¼ 0Þ and

all moments should cancel out to be zero ð
P

Mj
�!
¼ 0Þ

in all three-dimensions. At the level of virtual finger

(Cutkosky and Howe 1990; Iberall 1997; Yoshikawa

1999; Baud-Bovy and Soechting 2001; Santello et al.

2002), two groups of the variables are already neces-

sitated by static mechanics during a rectangular object

prehension: the thumb grasping force and the VF

grasping force (sum of individual finger normal forces)

should have the same force magnitudes along the

horizontal axis (i.e., Fn
vf = Fn

th; vf and th respectively

stand for virtual finger and thumb, and n represents a

normal force) while the sum of the thumb tangential

force (load force) and the VF tangential force should

be equal and opposite to the weight of the hand-held

object along the vertical axis (i.e., Ft
vf + Ft

th = –W; t

represents a tangential force and W stands for the

weight of a hand-held object). The other group of

variables, the tangential forces and moments of normal

and tangential force, are also coupled. The mechani-

cally necessitated coupling relationship between these

variables has been explained using the ‘chain effects’

(i.e., high correlations between seemingly unrelated

variables can be explained by chained relations

between variables (Gregory 2002; Zatsiorsky et al.

2003; Zatsiorsky and Latash 2004; Shim et al. 2005a).

Therefore, the novel finding of the previous studies

(Shim et al. 2003b, 2005a) on the principle of super-

position in human prehension was the decoupling of

the two groups of variables or two synergies, rather

than the coupling of variables in each synergy. There-

fore, there are two independent synergies used by the

CNS to control two important aspects of the prehension

of a rectangular object: grasping stability control by the

thumb and VF normal forces and rotational equilibrium

control by the thumb and VF tangential forces and the

moments of forces. Shim et al. (2006b) recently showed

that the stabilizations of grasping forces and grasping

moments can be modulated in different directions after

mechanical perturbations (sudden changes of weight of

the hand-held object and/or sudden changes of external

torques) are given. The study suggested that the CNS

may be more concerned about rotational equilibrium

control than grasping stability control when a mechan-

ical perturbation is given to the hand-held object.

Our study on circular object prehension revealed

relationships of elemental variables (thumb and VF

normal and tangential forces) similar to the rectangular

object prehension tasks of previous studies. The PCA

revealed two PCs: thumb and VF normal (tangential)

forces had large (small) loadings in one PC, but small

(large) loadings in the other. This data structure sug-

gests two null spaces or two independent multi-digit

synergies. This finding may not be easily expected

without experiments because the relationship between

the thumb and VF normal forces are not mechanically

necessitated in circular object prehension although it is

in rectangular object prehension. It appears that the

grasping stability and the rotational equilibrium are

controlled by two independent central commands

during circular object prehension as it was previously

suggested in rectangular object prehension. Thus, this

finding supports the principle of superposition for cir-

cular object prehension.
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The findings from PCA and DVar and DVarnorm

analysis also support the previously suggested central

neural back-coupling model (CBC-model) for multi-

digit actions (Latash et al. 2005b), because in the CBC-

model the performance variables related to ‘force

stabilization’ and ‘moment stabilization’ can be sepa-

rately modulated as it was shown in the results from

our experiments.

Hierarchical organization of prehension and

uncontrolled manifold (UCM) hypothesis

The earlier finger movement experiments from skilled

telegraphers (Bryan 1899) and typists (Book 1908)

suggested the hierarchical organization of finger

movements by demonstrating that lower level units

(e.g., letters) were combined as upper level unit (e.g.,

word) for typing control. The following physiological

and behavioral experiments in the mid twentieth cen-

turies (Weiss 1941; Sherrington 1947; Turvey 1977)

facilitated the conceptualization and theorization of

hierarchical organization of human behavior [see

(Gallistel 1980) for details].

In this study we have shown that there exist positive

multi-digit synergy indices for all external torque

conditions. This means that the IF moments had

dominant negative covariations, resulting in stabilized

performance of the VF moment (sum of IF moments).

These results conspicuously support the hierarchical

organization of prehension, i.e., the individual fingers

are acting together to stabilize the functionally

important performance of the VF. The stabilization of

the overall performance of individual finger actions

have been well described for rectangular object pre-

hension (Shim et al. 2003b, 2004a, 2004c, 2005a, 2006c)

and far more for multi-finger pressing (Shim et al.

2003a, 2005b; Latash et al. 2004b; Kim et al. 2006). All

these studies used digit interaction indices to study how

the CNS controls multiple digits during prehension and

pressing. This approach is similar to previously sug-

gested UCM hypothesis (Scholz and Schoner 1999;

Latash et al. 2002; Kang et al. 2004). According to

UCM hypothesis, the CNS specifies a subspace (UCM)

in the state space of elemental variables for a redun-

dant motor system and tries to find a solution for a task

in the subspace while allowing solutions in the UCM,

yet compressing the variability orthogonal to the UCM

(UCMorth). Thus, for a successful manipulation task,

the sum of the trial-to-trial variabilities (e.g.,
P4

j¼1 Varj

or variability in UCM) of individual finger actions (e.g.,

forces/moments) may be relatively large, whereas the

variability of the combined finger actions (e.g., Vartot

or variability in UCMorth) can be small. The previous

UCM analysis on multi-digit pressing removed inter-

digit dependency [called finger force enslaving (a

phenomenon of unintended force production by non-

task fingers during a task finger force production)

(Reilly and Hammond 2000; Zatsiorsky et al. 2000)] in

order to extract independent elemental variables,

called ‘Modes’ (Danion et al. 2003; Kang et al. 2004;

Olafsdottir et al. 2005a). The Modes have been con-

sidered as hypothetical independent elemental vari-

ables or central commands to fingers, and the UCM

analysis for finger force studies used Modes to inves-

tigate the synergic actions between the Modes.

The inter-dependent digit actions during pressing

are contributed by peripheral and central intrinsic

factors such as insertions of a flexor digitorum pro-

fundus to multiple fingers (von Schroeder et al. 1990;

von Schroeder and Botte 2001; Kilbreath et al. 2002)

and motor cortex (M1) outputs diverging to innervate

the spinal motor neuron pools of different finger

muscles (Shinoda et al. 1979; Fetz et al. 1980; Buys

et al. 1986). However, during a free object prehension,

the inter-dependent digit actions are caused by not

only the intrinsic factors but also the external con-

straints imposed by the task mechanics. For example,

when the thumb increases its normal force in static

circular object prehension as in our experiment, other

fingers will produce enslaving forces due to the

intrinsic finger dependency to the thumb (Olafsdottir

et al. 2005b). However, if the resultant force of the

finger enslaving forces is not the same and opposite to

the thumb force, the fingers will be required to adjust

the forces to compensate the difference between the

thumb force and the finger resultant force or VF force.

In our study, we did not remove the inter-digit

dependency for the investigation of synergic actions

between fingers due to technical difficulties (e.g., dif-

ferentiating the contributions of intrinsic factors from

the contributions of the mechanical constraints during

prehension of the free circular handle). However, if we

assume that the direction of enslaving actions of non-

task digits are the same as the direction of task digits as

implied by the previous studies (Lang and Schieber

2004; Shim et al. 2006b), removing the inter-digit

dependency would have caused changes in DVar and

DVarnorm values to be more positive. This would sug-

gest larger error compensations between fingers be-

cause the inter-digit dependency makes the finger

actions positively covary.

Active control of tangential forces

The tangential force during grasping has been con-

sidered to be passively coupled (Flanagan and Wing
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1995; Pheasant and O’Neill 1975) by other mechanical

constraints such as grasping normal force (Rohles

et al. 1983; Nagashima and Konz 1986; Imrhan and

Loo 1988), handle diameter (Pheasant and O’Neill

1975; DJ and MW 1986; Nagashima and Konz 1986;

Adams and Peterson 1988; Imrhan and Loo 1988),

contact surface condition (Amis 1987; Lee and Rim

1991; Radhakrishnan and Nagaravindra 1993; Gurram

et al. 1995; Kinoshita and Francis 1996; Hall 1997;

Johansson 1998), orientation of a handheld object

(Pataky et al. 2004), and inertial force (Zatsiorsky

2005).

It was previously shown that the finger normal for-

ces during pressing and prehension can be synergically

controlled by the CNS to stabilize the task-specific

performances (reviewed in Latash et al. 2004a). Pre-

vious studies on synergic finger actions during pressing

used the index synergy (i.e., DVar) to study the inter-

actions between the finger pressing forces (normal

forces) (Li et al. 1998; Shinohara et al. 2003).

Other studies on multi-digit prehension of a rect-

angular object used the index of synergy calculated

from the normal forces of individual fingers or the

moments of individual fingers (Shim et al. 2004c,

2005b, 2006c).

Contrary to the previous studies on rectangular ob-

ject prehension, the geometry of a circular object em-

ployed in the current study does not allow finger

normal forces to produce moments of force about the

center of the circular object. Thus, the tangential forces

are the only forces contributing to the moments which

achieve the rotational equilibrium of the circular object

against external torques. The index of synergy calcu-

lated from the tangential forces showed synergic ac-

tions between individual finger tangential forces for

stabilizing the virtual finger tangential force. Thus, this

result suggests that finger tangential forces can be ac-

tively controlled by the CNS.

Trial-to-trial variability of forces

Due to the obvious importance of accurate force pro-

duction in everyday activities, the variability of force

has been an interest of many researchers in human

motor control (Fullerton and Carttell 1892; Michon

1967; Newell and Carlton 1988; Newell and Corcos

1993; Moritz et al. 2005; Sosnoff and Newell 2006). The

experimental tasks employed in the current study were

designed to encourage the subjects to produce a con-

sistent prehension performance across multiple trials

under the same external torque conditions. Despite the

effort, the trial-to-trial variabilities of forces were sig-

nificant at both VF and IF levels.

The thumb and VF tangential force variabilities

showed very similar values for each external torque

(Fig. 4b), whereas the thumb normal force variability

was always larger than the VF normal force variability.

The identical variability trend of the thumb and VF

tangential forces can be simply explained by the mo-

ment constraint ð
P

Mj
�!
¼ 0Þ of static prehension

(Eq. 5). Since the resultant moment produced by the

thumb and VF should be equal and opposite to the

external torque, the moment of thumb tangential force

and the moment of VF should show close-to-perfect

negative correlations for an ideal performance: an in-

crease in one should be followed by a decrease in the

other with the same magnitude. The moments of

thumb and VF tangential forces are calculated by

multiplying the thumb and VF tangential forces by the

constant radius (4.5 cm) of the circular handle. Thus,

the thumb and VF tangential forces should also have

close-to-perfect negative correlations. Due to this

relationship, an increase in thumb tangential force

should correspond to a decrease in VF tangential force

with the same magnitude, resulting in the same vari-

ability (SD) as shown in Fig. 4b. The larger variability

of the VF normal force than the thumb normal force

can be explained from the non-parallel force directions

between the thumb and IF normal forces. Since the IF

normal forces are not parallel to the thumb normal

force, an increase in the thumb normal force with a

certain magnitude in the vertical direction should

correspond to an increase in the sum of the IF normal

forces with a larger magnitude to satisfy the force

constraint ð
P

Fj
!
¼ 0Þ in the vertical direction. This

relationship resulted in the larger VF normal force

variability than the thumb normal force variability.

In general, larger force variabilities were found in

negative external torque conditions (supination effort

for subjects) for both thumb and VF normal and tan-

gential forces (Fig. 4a, b). These findings reflect an

ability of the CNS control to the hand and lower arm

muscles to generate more consistent force outputs in

pronation than supination during static circular object

prehension. Previous studies showed that the strength

of subject is inversely related to the control of end-

effector force or torque (Shinohara et al. 2003; Ham-

ilton et al. 2004; Sosnoff and Newell 2006). Hamilton

et al. (2004) recorded the maximum voluntary torques

from four different muscle groups in the arm. They

showed that the coefficients of variation of torque de-

creased systematically as the maximum voluntary tor-

que increases. Sosnoff and Newell (2006) asked

subjects to consistent force output of 5 or 25% maxi-

mum voluntary force and found that the variability of

force output decreased with the maximum voluntary
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force. A previous study on strength training effects on

finger control showed that training finger muscles with

heavy loads increased both consistent force outputs

and functional hand dexterity (Bilodeau et al. 2000). If

muscle strength is a major factor to determine the

consistency of finger force outputs as suggested in the

previous studies, the large thumb and index finger

abductors producing pronation torques during circular

object prehension (e.g., thenar muscles of the thumb

and dorsal interossei for the index finger) may have

played a role in the small variability in the constant

torque production tasks during pronation as compared

to supination. However, the result of the current study

that showed smaller variability during pronation and

our previous studies that showed smaller maximum

voluntary torque in pronation as compared to supina-

tion (Shim et al. 2004a, 2006a) seem to be contradic-

tory to the previous studies by others. Thus, it seems

that the different between the pronation and supina-

tion torque control found in the current study seems to

be contributed to by the specificity of different muscle

groups involved in the pronation and supination tasks.

The synergy strength indices, DVar and DVarnorm,

are similar to negated covariations between the IF

moments: the positive and negative DVar and DVarnorm

represent prevalent negative and positive covariations

between variables, respectively. When the large vari-

ability was present for negative external torque con-

ditions, the larger error compensations between IF

moments, indexed by the larger DVar and DVarnorm

values for the negative external torque conditions,

were observed in our study. Thus, it appears that the

CNS uses the strategy to generate larger error com-

pensations between IF moments for the tasks in which

larger variabilities are present.
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